\achapter{Extraction of programs in Objective Caml and Haskell} \label{Extraction} \aauthor{Jean-Christophe Filliātre and Pierre Letouzey} \index{Extraction} \begin{flushleft} \em The status of extraction is experimental. \end{flushleft} We present here the \Coq\ extraction commands, used to build certified and relatively efficient functional programs, extracting them from the proofs of their specifications. The functional languages available as output are currently \ocaml\ and {\sf Haskell} and {\sf Scheme}. In the following, ``ML'' will be used (abusively) to refer to any of the three. \paragraph{Differences with old versions.} The current extraction mechanism is new for version 7.0 of {\Coq}. In particular, the \FW\ toplevel used as an intermediate step between \Coq\ and ML has been withdrawn. It is also not possible any more to import ML objects in this \FW\ toplevel. The current mechanism also differs from the one in previous versions of \Coq: there is no more an explicit toplevel for the language (formerly called {\sf Fml}). \asection{Generating ML code} \comindex{Extraction} \comindex{Recursive Extraction} \comindex{Extraction Module} \comindex{Recursive Extraction Module} The next two commands are meant to be used for rapid preview of extraction. They both display extracted term(s) inside \Coq. \begin{description} \item {\tt Extraction \qualid.} ~\par Extracts one term in the \Coq\ toplevel. \item {\tt Recursive Extraction \qualid$_1$ \dots\ \qualid$_n$.} ~\par Recursive extraction of all the globals \qualid$_1$ \dots\ \qualid$_n$ and all their dependencies in the \Coq\ toplevel. \end{description} %% TODO error messages All the following commands produce real ML files. User can choose to produce one monolithic file or one file per \Coq\ module. \begin{description} \item {\tt Extraction "{\em file}"} \qualid$_1$ \dots\ \qualid$_n$. ~\par Recursive extraction of all the globals \qualid$_1$ \dots\ \qualid$_n$ and all their dependencies in one monolithic file {\em file}. Global and local identifiers are renamed according to the choosen ML language to fullfill its syntactic conventions, keeping original names as much as possible. \item {\tt Extraction Module} \ident. ~\par Extraction of the \Coq\ module \ident\ to an ML module {\tt\ident.ml}. In case of name clash, identifiers are here renamed using prefixes \verb!coq_! or \verb!Coq_! to ensure a session-independent renaming. \item {\tt Recursive Extraction Module} \ident. ~\par Extraction of the \Coq\ module \ident\ and all other modules \ident\ depends on. \end{description} The list of globals \qualid$_i$ does not need to be exhaustive: it is automatically completed into a complete and minimal environment. Extraction will fail if it encounters an informative axiom not realized (see section \ref{extraction:axioms}). A warning will be issued if it encounters an logical axiom, to remind user that inconsistant logical axioms may lead to incorrect or non-terminating extracted terms. \asection{Extraction options} \asubsection{Setting the target language} \comindex{Extraction Language} The ability to fix target language is the first and more important of the extraction options. Default is Ocaml. Besides Haskell and Scheme, another language called Toplevel is provided. It is a pseudo-Ocaml, with no renaming on global names: so names are printed as in \Coq. This third language is available only at the \Coq\ Toplevel. \begin{description} \item {\tt Extraction Language Ocaml}. \item {\tt Extraction Language Haskell}. \item {\tt Extraction Language Scheme}. \item {\tt Extraction Language Toplevel}. \end{description} \asubsection{Inlining and optimizations} Since Objective Caml is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction mechanism provides an automatic optimization routine that will be called each time the user want to generate Ocaml programs. Essentially, it performs constants inlining and reductions. Therefore some constants may not appear in resulting monolithic Ocaml program (a warning is printed for each such constant). In the case of modular extraction, even if some inlining is done, the inlined constant are nevertheless printed, to ensure session-independent programs. Concerning Haskell, such optimizations are less useful because of lazyness. We still make some optimizations, for example in order to produce more readable code. All these optimizations are controled by the following \Coq\ options: \begin{description} \comindex{Set Extraction Optimize} \comindex{Unset Extraction Optimize} \item {\tt Set Extraction Optimize.} \item {\tt Unset Extraction Optimize.} ~\par Default is Set. This control all optimizations made on the ML terms (mostly reduction of dummy beta/iota redexes, but also simplications on Cases, etc). Put this option to Unset if you want a ML term as close as possible to the Coq term. \comindex{Set Extraction AutoInline} \comindex{Unset Extraction AutoInline} \item {\tt Set Extraction AutoInline.} \item {\tt Unset Extraction AutoInline.} ~\par Default is Set, so by default, the extraction mechanism feels free to inline the bodies of some defined constants, according to some heuristics like size of bodies, useness of some arguments, etc. Those heuristics are not always perfect, you may want to disable this feature, do it by Unset. \comindex{Extraction Inline} \comindex{Extraction NoInline} \item {\tt Extraction Inline} \qualid$_1$ \dots\ \qualid$_n$. ~\par \item {\tt Extraction NoInline} \qualid$_1$ \dots\ \qualid$_n$. ~\par In addition to the automatic inline feature, you can now tell precisely to inline some more constants by the {\tt Extraction Inline} command. Conversely, you can forbid the automatic inlining of some specific constants by the {\tt Extraction NoInline} command. Those two commands enable a precise control of what is inlined and what is not. \comindex{Print Extraction Inline} \item {\tt Print Extraction Inline}. ~\par Prints the current state of the table recording the custom inlinings declared by the two previous commands. \comindex{Reset Extraction Inline} \item {\tt Reset Extraction Inline}. ~\par Puts the table recording the custom inlinings back to empty. \end{description} \paragraph{Inlining and printing of a constant declaration.} A user can explicitely asks a constant to be extracted by two means: \begin{itemize} \item by mentioning it on the extraction command line \item by extracting the whole \Coq\ module of this constant. \end{itemize} In both cases, the declaration of this constant will be present in the produced file. But this same constant may or may not be inlined in the following terms, depending on the automatic/custom inlining mechanism. For the constants non-explicitely required but needed for dependancy reasons, there are two cases: \begin{itemize} \item If an inlining decision is taken, wether automatically or not, all occurences of this constant are replaced by its extracted body, and this constant is not declared in the generated file. \item If no inlining decision is taken, the constant is normally declared in the produced file. \end{itemize} \asubsection{Realizing axioms}\label{extraction:axioms} It is possible to assume some axioms while developing a proof. Since these axioms can be any kind of proposition or object type, they may perfectly well have some computational content. But a program must be a closed term, and of course the system cannot guess the program which realizes an axiom. Therefore, it is possible to tell the system what ML term corresponds to a given axiom. Of course, it is the responsability of the user to ensure that the ML terms given to realize the axioms do have the expected types. \comindex{Extract Constant} \comindex{Extract Inductive} The system actually provides a more general mechanism to specify ML terms even for defined constants, inductive types and constructors. For instance, the user may want to use the ML native boolean type instead of \Coq\ one. The syntax is the following: \begin{description} \item{\tt Extract Constant \qualid\ => \str.} ~\par Give an ML extraction for the given constant. The \str\ may be an identifier or a quoted string. \item{\tt Extract Inlined Constant \qualid\ => \str.} ~\par Same as the previous one, except that the given ML terms will be inlined everywhere instead of being declared via a let. \item{\tt Extract Inductive \qualid\ => \str\ [ \str\ \dots \str\ ].} ~\par Give an ML extraction for the given inductive type. You must specify extractions for the type itself (first \str) and all its constructors (between square brackets). The ML extraction must be an ML recursive datatype. \end{description} \begin{Remarks} %\item % The given ML terms are always inlined; thus, it may be % useful to introduce definitions in a separate ML module and then to % use the corresponding qualified names. \item The extraction of a module depending on axioms from another module will not fail. It is the responsability of the ``extractor'' of that other module to realize the given axioms. \item Note that now, the {\tt Extract Inlined Constant} command is sugar for an {\tt Extract Constant} followed by a {\tt Extraction Inline}. So be careful with {\tt Reset Extraction Inline}. \end{Remarks} \Example Typical examples are the following: \begin{coq_example} Extract Inductive unit => unit [ "()" ]. Extract Inductive bool => bool [ true false ]. Extract Inductive sumbool => bool [ true false ]. \end{coq_example} \asection{Differences between \Coq\ and ML type systems} Due to differences between \Coq\ and ML type systems, some extracted programs are not directly typable in ML. We now solve this problem (at least in Ocaml) by adding when needed some unsafe casting {\tt Obj.magic}, which give a generic type {\tt 'a} to any term. For example, Here are two kinds of problem that can occur: \begin{itemize} \item If some part of the program is {\em very} polymorphic, there may be no ML type for it. In that case the extraction to ML works all right but the generated code may be refused by the ML type-checker. A very well known example is the {\em distr-pair} function: $$\mbox{\tt Definition dp := [A,B:Set][x:A][y:B][f:(C:Set)C->C](f A x,f B y). }$$ In Ocaml, for instance, the direct extracted term would be: $$\mbox{\tt let dp x y f = Pair((f () x),(f () y)) }$$ and would have type $$\mbox{\tt dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod }$$ which is not its original type, but a restriction. We now produce the following correct version: $$\mbox{\tt let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y)) }$$ \item Some definitions of \Coq\ may have no counterpart in ML. This happens when there is a quantification over types inside the type of a constructor; for example: $$\mbox{\tt Inductive anything : Set := dummy : (A:Set)A->anything. }$$ which corresponds to the definition of an ML dynamic type. In Ocaml, we must cast any argument of the constructor dummy. \end{itemize} Even with those unsafe castings, you should never get error like ``segmentation fault''. In fact even if your program may seem ill-typed to the Ocaml type-checker, it can't go wrong: it comes from a Coq well-typed terms, so for example inductives will always have the correct number of arguments, etc. More details about the correctness of the extracted programs can be found in \cite{Let02}. We have to say, though, that in most ``realistic'' programs, these problems do not occur. For example all the programs of Coq library are accepted by Caml type-checker without any {\tt Obj.magic} (see examples below). \asection{Some examples} We present here two examples of extractions, taken from the \Coq\ Standard Library. We choose \ocaml\ as target language, but all can be done in the other dialects with slight modifications. We then indicate where to find other examples and tests of Extraction. \asubsection{A detailed example: Euclidean division} The file {\tt Euclid} contains the proof of Euclidean division (theorem {\tt eucl\_dev}). The natural numbers defined in the example files are unary integers defined by two constructors $O$ and $S$: \begin{coq_example*} Inductive nat : Set := O : nat | S : nat -> nat. \end{coq_example*} This module contains a theorem {\tt eucl\_dev}, and its extracted term is of type $$\mbox{\tt (b:nat)(gt b O)->(a:nat)(diveucl a b)}$$ where {\tt diveucl} is a type for the pair of the quotient and the modulo. We can now extract this program to \ocaml: \begin{coq_eval} Reset Initial. \end{coq_eval} \begin{coq_example} Require Euclid. Extraction Inline Wf_nat.gt_wf_rec Wf_nat.lt_wf_rec. Recursive Extraction eucl_dev. \end{coq_example} The inlining of {\tt gt\_wf\_rec} and {\tt lt\_wf\_rec} is not mandatory. It only enhances readability of extracted code. You can then copy-paste the output to a file {\tt euclid.ml} or let \Coq\ do it for you with the following command: \begin{coq_example} Extraction "euclid" eucl_dev. \end{coq_example} Let us play the resulting program: \begin{verbatim} # #use "euclid.ml";; type sumbool = Left | Right type nat = O | S of nat type diveucl = Divex of nat * nat val minus : nat -> nat -> nat = val le_lt_dec : nat -> nat -> sumbool = val le_gt_dec : nat -> nat -> sumbool = val eucl_dev : nat -> nat -> diveucl = # eucl_dev (S (S O)) (S (S (S (S (S O)))));; - : diveucl = Divex (S (S O), S O) \end{verbatim} It is easier to test on \ocaml\ integers: \begin{verbatim} # let rec i2n = function 0 -> O | n -> S (i2n (n-1));; val i2n : int -> nat = # let rec n2i = function O -> 0 | S p -> 1+(n2i p);; val n2i : nat -> int = # let div a b = let Divex (q,r) = eucl_dev (i2n b) (i2n a) in (n2i q, n2i r);; div : int -> int -> int * int = # div 173 15;; - : int * int = 11, 8 \end{verbatim} \asubsection{Another detailed example: Heapsort} The file {\tt Heap.v} contains the proof of an efficient list sorting algorithm described by Bjerner. Is is an adaptation of the well-known {\em heapsort} algorithm to functional languages. The main function is {\tt treesort}, whose type is shown below: \begin{coq_eval} Reset Initial. Require Relation_Definitions. Require PolyList. Require Sorting. Require Permutation. \end{coq_eval} \begin{coq_example} Require Heap. Check treesort. \end{coq_example} Let's now extract this function: \begin{coq_example} Extraction Inline Sorting.sort_rec is_heap_rec. Extraction NoInline list_to_heap. Extraction "heapsort" treesort. \end{coq_example} One more time, the {\tt Extraction Inline} and {\tt NoInline} directives are cosmetic. Without it, everything goes right, but the output is less readable. Here is the produced file {\tt heapsort.ml}: \begin{verbatim} type nat = | O | S of nat type 'a sig2 = 'a (* singleton inductive, whose constructor was exist2 *) type sumbool = | Left | Right type 'a list = | Nil | Cons of 'a * 'a list type 'a multiset = 'a -> nat (* singleton inductive, whose constructor was Bag *) type 'a merge_lem = 'a list (* singleton inductive, whose constructor was merge_exist *) (** val merge : ('a1 -> 'a1 -> sumbool) -> ('a1 -> 'a1 -> sumbool) -> 'a1 list -> 'a1 list -> 'a1 merge_lem **) let rec merge leA_dec eqA_dec l1 l2 = match l1 with | Nil -> l2 | Cons (a, l) -> let rec f = function | Nil -> Cons (a, l) | Cons (a0, l3) -> (match leA_dec a a0 with | Left -> Cons (a, (merge leA_dec eqA_dec l (Cons (a0, l3)))) | Right -> Cons (a0, (f l3))) in f l2 type 'a tree = | Tree_Leaf | Tree_Node of 'a * 'a tree * 'a tree type 'a insert_spec = 'a tree (* singleton inductive, whose constructor was insert_exist *) (** val insert : ('a1 -> 'a1 -> sumbool) -> ('a1 -> 'a1 -> sumbool) -> 'a1 tree -> 'a1 -> 'a1 insert_spec **) let rec insert leA_dec eqA_dec t a = match t with | Tree_Leaf -> Tree_Node (a, Tree_Leaf, Tree_Leaf) | Tree_Node (a0, t0, t1) -> let h3 = fun x -> insert leA_dec eqA_dec t0 x in (match leA_dec a0 a with | Left -> Tree_Node (a0, t1, (h3 a)) | Right -> Tree_Node (a, t1, (h3 a0))) type 'a build_heap = 'a tree (* singleton inductive, whose constructor was heap_exist *) (** val list_to_heap : ('a1 -> 'a1 -> sumbool) -> ('a1 -> 'a1 -> sumbool) -> 'a1 list -> 'a1 build_heap **) let rec list_to_heap leA_dec eqA_dec = function | Nil -> Tree_Leaf | Cons (a, l0) -> insert leA_dec eqA_dec (list_to_heap leA_dec eqA_dec l0) a type 'a flat_spec = 'a list (* singleton inductive, whose constructor was flat_exist *) (** val heap_to_list : ('a1 -> 'a1 -> sumbool) -> ('a1 -> 'a1 -> sumbool) -> 'a1 tree -> 'a1 flat_spec **) let rec heap_to_list leA_dec eqA_dec = function | Tree_Leaf -> Nil | Tree_Node (a, t0, t1) -> Cons (a, (merge leA_dec eqA_dec (heap_to_list leA_dec eqA_dec t0) (heap_to_list leA_dec eqA_dec t1))) (** val treesort : ('a1 -> 'a1 -> sumbool) -> ('a1 -> 'a1 -> sumbool) -> 'a1 list -> 'a1 list sig2 **) let treesort leA_dec eqA_dec l = heap_to_list leA_dec eqA_dec (list_to_heap leA_dec eqA_dec l) \end{verbatim} Let's test it: \begin{verbatim} # #use "heapsort.ml";; type sumbool = Left | Right type nat = O | S of nat type 'a tree = Tree_Leaf | Tree_Node of 'a * 'a tree * 'a tree type 'a list = Nil | Cons of 'a * 'a list val merge : ('a -> 'a -> sumbool) -> 'b -> 'a list -> 'a list -> 'a list = val heap_to_list : ('a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a list = val insert : ('a -> 'a -> sumbool) -> 'b -> 'a tree -> 'a -> 'a tree = val list_to_heap : ('a -> 'a -> sumbool) -> 'b -> 'a list -> 'a tree = val treesort : ('a -> 'a -> sumbool) -> 'b -> 'a list -> 'a list = \end{verbatim} One can remark that the argument of {\tt treesort} corresponding to {\tt eqAdec} is never used in the informative part of the terms, only in the logical parts. So the extracted {\tt treesort} never use it, hence this {\tt 'b} argument. We will use {\tt ()} for this argument. Only remains the {\tt leAdec} argument (of type {\tt 'a -> 'a -> sumbool}) to really provide. \begin{verbatim} # let leAdec x y = if x <= y then Left else Right;; val leAdec : 'a -> 'a -> sumbool = # let rec listn = function 0 -> Nil | n -> Cons(Random.int 10000,listn (n-1));; val listn : int -> int list = # treesort leAdec () (listn 10);; - : int list = Cons (136, Cons (760, Cons (1512, Cons (2776, Cons (3064, Cons (4536, Cons (5768, Cons (7560, Cons (8856, Cons (8952, Nil)))))))))) \end{verbatim} Some tests on longer lists (10000 elements) show that the program is quite efficient for Caml code. \asubsection{The Standard Library} As a test, we propose an automatic extraction of the Standard Library of \Coq. In particular, we will find back the two previous examples, {\tt Euclid} and {\tt Heapsort}. Go to directory\\ {\tt contrib/extraction/test} of the sources of \Coq, and run commands:\\ \mbox{\tt make tree; make}\\ This will extract all Standard Library files and compile them. It is done via many {\tt Extraction Module}, with some customization (see subdirectory {\tt custom}). The result of this extraction of the Standard Library can be browsed at the address:\\ \verb!http://www.lri.fr/~letouzey/extraction!\\ %Reals theory is normally not extracted, since it is an axiomatic %development. We propose nonetheless a dummy realization of those %axioms, to test, run: \\ % %\mbox{\tt make reals}\\ This test works also with Haskell. In the same directory, run: \\ \mbox{\tt make tree; make -f Makefile.haskell}\\ The haskell compiler currently used is {\tt hbc}. Any other should also work, just adapt the {\tt Makefile.haskell}. In particular {\tt ghc} is known to work. \asubsection{Extraction's horror museum} Some pathological examples of extraction are grouped in the file\\ {\tt contrib/extraction/test\_extraction.v} of the sources of \Coq. \asubsection{Users' Contributions} Several of the \Coq\ Users' Contributions use extraction to produce certified programs. In particular the following ones have an automatic extraction test (just run {\tt make} in those directories): \begin{itemize} \item Bordeaux/Additions \item Bordeaux/EXCEPTIONS \item Bordeaux/SearchTrees \item Dyade/BDDS \item Lyon/CIRCUITS \item Lyon/FIRING-SQUAD \item Marseille/CIRCUITS \item Nancy/FOUnify \item Rocq/ARITH/Chinese \item Rocq/COC \item Rocq/GRAPHS \item Rocq/HIGMAN \item Sophia-Antipolis/Stalmarck \item Suresnes/BDD \end{itemize} Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are the only examples of developments where {\tt Obj.magic} are needed. This is probably due to an heavy use of impredicativity. After compilation those two examples run nonetheless, thanks to the correction of the extraction (see \cite{Let02}). % $Id$