(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* match t with | (radd ?t1 ?t2) => let e1 := mkP t1 in let e2 := mkP t2 in constr:(FEadd e1 e2) | (rmul ?t1 ?t2) => let e1 := mkP t1 in let e2 := mkP t2 in constr:(FEmul e1 e2) | (rsub ?t1 ?t2) => let e1 := mkP t1 in let e2 := mkP t2 in constr:(FEsub e1 e2) | (ropp ?t1) => let e1 := mkP t1 in constr:(FEopp e1) | (rdiv ?t1 ?t2) => let e1 := mkP t1 in let e2 := mkP t2 in constr:(FEdiv e1 e2) | (rinv ?t1) => let e1 := mkP t1 in constr:(FEinv e1) | (rpow ?t1 ?n) => match CstPow n with | InitialRing.NotConstant => let p := Find_at t fv in constr:(@FEX C p) | ?c => let e1 := mkP t1 in constr:(FEpow e1 c) end | _ => let p := Find_at t fv in constr:(@FEX C p) end | ?c => constr:(FEc c) end in mkP t. Ltac FFV Cst CstPow add mul sub opp div inv pow t fv := let rec TFV t fv := match Cst t with | InitialRing.NotConstant => match t with | (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) | (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) | (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) | (opp ?t1) => TFV t1 fv | (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) | (inv ?t1) => TFV t1 fv | (pow ?t1 ?n) => match CstPow n with | InitialRing.NotConstant => AddFvTail t fv | _ => TFV t1 fv end | _ => AddFvTail t fv end | _ => fv end in TFV t fv. Ltac ParseFieldComponents lemma req := match type of lemma with | context [ (* PCond _ _ _ _ _ _ _ _ _ _ _ -> *) req (@FEeval ?R ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv ?C ?phi ?Cpow ?Cp_phi ?rpow _ _) _ ] => (fun f => f radd rmul rsub ropp rdiv rinv rpow C) | _ => fail 1 "field anomaly: bad correctness lemma (parse)" end. (* simplifying the non-zero condition... *) Ltac fold_field_cond req := let rec fold_concl t := match t with ?x /\ ?y => let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy) | req ?x ?y -> False => constr:(~ req x y) | _ => t end in match goal with |- ?t => let ft := fold_concl t in change ft end. Ltac simpl_PCond req := protect_fv "field_cond"; (try exact I); fold_field_cond req. Ltac simpl_PCond_BEURK req := protect_fv "field_cond"; fold_field_cond req. (* Rewriting (field_simplify) *) Ltac Field_norm_gen f Cst_tac Pow_tac lemma Cond_lemma req n lH rl := let Main radd rmul rsub ropp rdiv rinv rpow C := let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let mkFE := mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let fv := FV_hypo_tac mkFV req lH in let simpl_field H := (protect_fv "field" in H;f H) in let lemma_tac fv RW_tac := let rr_lemma := fresh "f_rw_lemma" in let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in let vlpe := fresh "list_hyp" in let vlmp := fresh "list_hyp_norm" in let vlmp_eq := fresh "list_hyp_norm_eq" in let prh := proofHyp_tac lH in pose (vlpe := lpe); match type of lemma with | context [mk_monpol_list ?cO ?cI ?cadd ?cmul ?csub ?copp ?cdiv ?ceqb _] => compute_assertion vlmp_eq vlmp (mk_monpol_list cO cI cadd cmul csub copp cdiv ceqb vlpe); (assert (rr_lemma := lemma n vlpe fv prh vlmp vlmp_eq) || fail 1 "type error when build the rewriting lemma"); RW_tac rr_lemma; try clear rr_lemma vlmp_eq vlmp vlpe | _ => fail 1 "field_simplify anomaly: bad correctness lemma" end in ReflexiveRewriteTactic mkFFV mkFE simpl_field lemma_tac fv rl; try (apply Cond_lemma; simpl_PCond req) in ParseFieldComponents lemma req Main. Ltac Field_simplify_gen f := fun req cst_tac pow_tac _ _ field_simplify_ok _ cond_ok pre post lH rl => pre(); Field_norm_gen f cst_tac pow_tac field_simplify_ok cond_ok req ring_subst_niter lH rl; post(). Ltac Field_simplify := Field_simplify_gen ltac:(fun H => rewrite H). Tactic Notation (at level 0) "field_simplify" constr_list(rl) := let G := Get_goal in field_lookup Field_simplify [] rl [G]. Tactic Notation (at level 0) "field_simplify" "[" constr_list(lH) "]" constr_list(rl) := let G := Get_goal in field_lookup Field_simplify [lH] rl [G]. Tactic Notation "field_simplify" constr_list(rl) "in" hyp(H):= let G := Get_goal in let t := type of H in let g := fresh "goal" in set (g:= G); generalize H;clear H; field_lookup Field_simplify [] rl [t]; intro H; unfold g;clear g. Tactic Notation "field_simplify" "["constr_list(lH) "]" constr_list(rl) "in" hyp(H):= let G := Get_goal in let t := type of H in let g := fresh "goal" in set (g:= G); generalize H;clear H; field_lookup Field_simplify [lH] rl [t]; intro H; unfold g;clear g. (* Ltac Field_simplify_in hyp:= Field_simplify_gen ltac:(fun H => rewrite H in hyp). Tactic Notation (at level 0) "field_simplify" constr_list(rl) "in" hyp(h) := let t := type of h in field_lookup (Field_simplify_in h) [] rl [t]. Tactic Notation (at level 0) "field_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h) := let t := type of h in field_lookup (Field_simplify_in h) [lH] rl [t]. *) (** Generic tactic for solving equations *) Ltac Field_Scheme Simpl_tac Cst_tac Pow_tac lemma Cond_lemma req n lH := let Main radd rmul rsub ropp rdiv rinv rpow C := let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let mkFE := mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let rec ParseExpr ilemma := match type of ilemma with forall nfe, ?fe = nfe -> _ => (fun t => let x := fresh "fld_expr" in let H := fresh "norm_fld_expr" in compute_assertion H x fe; ParseExpr (ilemma x H) t; try clear x H) | _ => (fun t => t ilemma) end in let Main_eq t1 t2 := let fv := FV_hypo_tac mkFV req lH in let fv := mkFFV t1 fv in let fv := mkFFV t2 fv in let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in let prh := proofHyp_tac lH in let vlpe := fresh "list_hyp" in let fe1 := mkFE t1 fv in let fe2 := mkFE t2 fv in pose (vlpe := lpe); let nlemma := fresh "field_lemma" in (assert (nlemma := lemma n fv vlpe fe1 fe2 prh) || fail "field anomaly:failed to build lemma"); ParseExpr nlemma ltac:(fun ilemma => apply ilemma || fail "field anomaly: failed in applying lemma"; [ Simpl_tac | apply Cond_lemma; simpl_PCond req]); clear vlpe nlemma in OnEquation req Main_eq in ParseFieldComponents lemma req Main. (* solve completely a field equation, leaving non-zero conditions to be proved (field) *) Ltac FIELD := let Simpl := vm_compute; reflexivity || fail "not a valid field equation" in fun req cst_tac pow_tac field_ok _ _ _ cond_ok pre post lH rl => pre(); Field_Scheme Simpl cst_tac pow_tac field_ok cond_ok req Ring_tac.ring_subst_niter lH; try exact I; post(). Tactic Notation (at level 0) "field" := let G := Get_goal in field_lookup FIELD [] [G]. Tactic Notation (at level 0) "field" "[" constr_list(lH) "]" := let G := Get_goal in field_lookup FIELD [lH] [G]. (* transforms a field equation to an equivalent (simplified) ring equation, and leaves non-zero conditions to be proved (field_simplify_eq) *) Ltac FIELD_SIMPL := let Simpl := (protect_fv "field") in fun req cst_tac pow_tac _ field_simplify_eq_ok _ _ cond_ok pre post lH rl => pre(); Field_Scheme Simpl cst_tac pow_tac field_simplify_eq_ok cond_ok req Ring_tac.ring_subst_niter lH; post(). Tactic Notation (at level 0) "field_simplify_eq" := let G := Get_goal in field_lookup FIELD_SIMPL [] [G]. Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" := let G := Get_goal in field_lookup FIELD_SIMPL [lH] [G]. (* Same as FIELD_SIMPL but in hypothesis *) Ltac Field_simplify_eq Cst_tac Pow_tac lemma Cond_lemma req n lH := let Main radd rmul rsub ropp rdiv rinv rpow C := let hyp := fresh "hyp" in intro hyp; match type of hyp with | req ?t1 ?t2 => let mkFV := FV Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in let mkFFV := FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let mkFE := mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow in let rec ParseExpr ilemma := match type of ilemma with | forall nfe, ?fe = nfe -> _ => (fun t => let x := fresh "fld_expr" in let H := fresh "norm_fld_expr" in compute_assertion H x fe; ParseExpr (ilemma x H) t; try clear H x) | _ => (fun t => t ilemma) end in let fv := FV_hypo_tac mkFV req lH in let fv := mkFFV t1 fv in let fv := mkFFV t2 fv in let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in let prh := proofHyp_tac lH in let fe1 := mkFE t1 fv in let fe2 := mkFE t2 fv in let vlpe := fresh "vlpe" in ParseExpr (lemma n fv lpe fe1 fe2 prh) ltac:(fun ilemma => match type of ilemma with | req _ _ -> _ -> ?EQ => let tmp := fresh "tmp" in assert (tmp : EQ); [ apply ilemma; [ exact hyp | apply Cond_lemma; simpl_PCond_BEURK req] | protect_fv "field" in tmp; generalize tmp;clear tmp ]; clear hyp end) end in ParseFieldComponents lemma req Main. Ltac FIELD_SIMPL_EQ := fun req cst_tac pow_tac _ _ _ lemma cond_ok pre post lH rl => pre(); Field_simplify_eq cst_tac pow_tac lemma cond_ok req Ring_tac.ring_subst_niter lH; post(). Tactic Notation (at level 0) "field_simplify_eq" "in" hyp(H) := let t := type of H in generalize H; field_lookup FIELD_SIMPL_EQ [] [t]; [ try exact I | clear H;intro H]. Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" "in" hyp(H) := let t := type of H in generalize H; field_lookup FIELD_SIMPL_EQ [lH] [t]; [ try exact I |clear H;intro H]. (* Adding a new field *) Ltac ring_of_field f := match type of f with | almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f) | field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f) | semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f) end. Ltac coerce_to_almost_field set ext f := match type of f with | almost_field_theory _ _ _ _ _ _ _ _ _ => f | field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f) | semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f) end. Ltac field_elements set ext fspec pspec sspec dspec rk := let afth := coerce_to_almost_field set ext fspec in let rspec := ring_of_field fspec in ring_elements set ext rspec pspec sspec dspec rk ltac:(fun arth ext_r morph p_spec s_spec d_spec f => f afth ext_r morph p_spec s_spec d_spec). Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk := let get_lemma := match pspec with None => fun x y => x | _ => fun x y => y end in let simpl_eq_lemma := get_lemma Field_simplify_eq_correct Field_simplify_eq_pow_correct in let simpl_eq_in_lemma := get_lemma Field_simplify_eq_in_correct Field_simplify_eq_pow_in_correct in let rw_lemma := get_lemma Field_rw_correct Field_rw_pow_correct in field_elements set ext fspec pspec sspec dspec rk ltac:(fun afth ext_r morph p_spec s_spec d_spec => match morph with | _ => let field_ok1 := constr:(Field_correct set ext_r inv_m afth morph) in match p_spec with | mkhypo ?pp_spec => let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in match s_spec with | mkhypo ?ss_spec => let field_ok3 := constr:(field_ok2 _ ss_spec) in match d_spec with | mkhypo ?dd_spec => let field_ok := constr:(field_ok3 _ dd_spec) in let mk_lemma lemma := constr:(lemma _ _ _ _ _ _ _ _ _ _ set ext_r inv_m afth _ _ _ _ _ _ _ _ _ morph _ _ _ pp_spec _ ss_spec _ dd_spec) in let field_simpl_eq_ok := mk_lemma simpl_eq_lemma in let field_simpl_ok := mk_lemma rw_lemma in let field_simpl_eq_in := mk_lemma simpl_eq_in_lemma in let cond1_ok := constr:(Pcond_simpl_gen set ext_r afth morph pp_spec dd_spec) in let cond2_ok := constr:(Pcond_simpl_complete set ext_r afth morph pp_spec dd_spec) in (fun f => f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok field_simpl_eq_in cond1_ok cond2_ok) | _ => fail 4 "field: bad coefficiant division specification" end | _ => fail 3 "field: bad sign specification" end | _ => fail 2 "field: bad power specification" end | _ => fail 1 "field internal error : field_lemmas, please report" end).