(************************************************************************* PROJET RNRT Calife - 2001 Author: Pierre Crégut - France Télécom R&D Licence : LGPL version 2.1 *************************************************************************) let module_refl_name = "ReflOmegaCore" let module_refl_path = ["Coq"; "romega"; module_refl_name] type result = Kvar of string | Kapp of string * Term.constr list | Kimp of Term.constr * Term.constr | Kufo;; let destructurate t = let c, args = Term.decompose_app t in match Term.kind_of_term c, args with | Term.Const sp, args -> Kapp (Names.string_of_id (Nametab.id_of_global (Libnames.ConstRef sp)), args) | Term.Construct csp , args -> Kapp (Names.string_of_id (Nametab.id_of_global (Libnames.ConstructRef csp)), args) | Term.Ind isp, args -> Kapp (Names.string_of_id (Nametab.id_of_global (Libnames.IndRef isp)), args) | Term.Var id,[] -> Kvar(Names.string_of_id id) | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body) | Term.Prod (Names.Name _,_,_),[] -> Util.error "Omega: Not a quantifier-free goal" | _ -> Kufo exception Destruct let dest_const_apply t = let f,args = Term.decompose_app t in let ref = match Term.kind_of_term f with | Term.Const sp -> Libnames.ConstRef sp | Term.Construct csp -> Libnames.ConstructRef csp | Term.Ind isp -> Libnames.IndRef isp | _ -> raise Destruct in Nametab.id_of_global ref, args let recognize_number t = let rec loop t = let f,l = dest_const_apply t in match Names.string_of_id f,l with "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t)) | "xO",[t] -> Bigint.mult Bigint.two (loop t) | "xH",[] -> Bigint.one | _ -> failwith "not a number" in let f,l = dest_const_apply t in match Names.string_of_id f,l with "Zpos",[t] -> loop t | "Zneg",[t] -> Bigint.neg (loop t) | "Z0",[] -> Bigint.zero | _ -> failwith "not a number";; let logic_dir = ["Coq";"Logic";"Decidable"] let coq_modules = Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules @ [["Coq"; "omega"; "OmegaLemmas"]] @ [["Coq"; "Lists"; (if !Options.v7 then "PolyList" else "List")]] @ [module_refl_path] let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules let coq_xH = lazy (constant "xH") let coq_xO = lazy (constant "xO") let coq_xI = lazy (constant "xI") let coq_ZERO = lazy (constant "Z0") let coq_POS = lazy (constant "Zpos") let coq_NEG = lazy (constant "Zneg") let coq_Z = lazy (constant "Z") let coq_relation = lazy (constant "comparison") let coq_SUPERIEUR = lazy (constant "SUPERIEUR") let coq_INFEEIEUR = lazy (constant "INFERIEUR") let coq_EGAL = lazy (constant "EGAL") let coq_Zplus = lazy (constant "Zplus") let coq_Zmult = lazy (constant "Zmult") let coq_Zopp = lazy (constant "Zopp") let coq_Zminus = lazy (constant "Zminus") let coq_Zs = lazy (constant "Zs") let coq_Zgt = lazy (constant "Zgt") let coq_Zle = lazy (constant "Zle") let coq_inject_nat = lazy (constant "inject_nat") (* Peano *) let coq_le = lazy(constant "le") let coq_gt = lazy(constant "gt") (* Integers *) let coq_nat = lazy(constant "nat") let coq_S = lazy(constant "S") let coq_O = lazy(constant "O") let coq_minus = lazy(constant "minus") (* Logic *) let coq_eq = lazy(constant "eq") let coq_refl_equal = lazy(constant "refl_equal") let coq_and = lazy(constant "and") let coq_not = lazy(constant "not") let coq_or = lazy(constant "or") let coq_True = lazy(constant "True") let coq_False = lazy(constant "False") let coq_ex = lazy(constant "ex") let coq_I = lazy(constant "I") (* Lists *) let coq_cons = lazy (constant "cons") let coq_nil = lazy (constant "nil") let coq_pcons = lazy (constant "Pcons") let coq_pnil = lazy (constant "Pnil") let coq_h_step = lazy (constant "h_step") let coq_pair_step = lazy (constant "pair_step") let coq_p_left = lazy (constant "P_LEFT") let coq_p_right = lazy (constant "P_RIGHT") let coq_p_invert = lazy (constant "P_INVERT") let coq_p_step = lazy (constant "P_STEP") let coq_p_nop = lazy (constant "P_NOP") let coq_t_int = lazy (constant "Tint") let coq_t_plus = lazy (constant "Tplus") let coq_t_mult = lazy (constant "Tmult") let coq_t_opp = lazy (constant "Topp") let coq_t_minus = lazy (constant "Tminus") let coq_t_var = lazy (constant "Tvar") let coq_p_eq = lazy (constant "EqTerm") let coq_p_leq = lazy (constant "LeqTerm") let coq_p_geq = lazy (constant "GeqTerm") let coq_p_lt = lazy (constant "LtTerm") let coq_p_gt = lazy (constant "GtTerm") let coq_p_neq = lazy (constant "NeqTerm") let coq_p_true = lazy (constant "TrueTerm") let coq_p_false = lazy (constant "FalseTerm") let coq_p_not = lazy (constant "Tnot") let coq_p_or = lazy (constant "Tor") let coq_p_and = lazy (constant "Tand") let coq_p_imp = lazy (constant "Timp") let coq_p_prop = lazy (constant "Tprop") let coq_proposition = lazy (constant "proposition") let coq_interp_sequent = lazy (constant "interp_goal_concl") let coq_normalize_sequent = lazy (constant "normalize_goal") let coq_execute_sequent = lazy (constant "execute_goal") let coq_do_concl_to_hyp = lazy (constant "do_concl_to_hyp") let coq_sequent_to_hyps = lazy (constant "goal_to_hyps") let coq_normalize_hyps_goal = lazy (constant "normalize_hyps_goal") (* Constructors for shuffle tactic *) let coq_t_fusion = lazy (constant "t_fusion") let coq_f_equal = lazy (constant "F_equal") let coq_f_cancel = lazy (constant "F_cancel") let coq_f_left = lazy (constant "F_left") let coq_f_right = lazy (constant "F_right") (* Constructors for reordering tactics *) let coq_step = lazy (constant "step") let coq_c_do_both = lazy (constant "C_DO_BOTH") let coq_c_do_left = lazy (constant "C_LEFT") let coq_c_do_right = lazy (constant "C_RIGHT") let coq_c_do_seq = lazy (constant "C_SEQ") let coq_c_nop = lazy (constant "C_NOP") let coq_c_opp_plus = lazy (constant "C_OPP_PLUS") let coq_c_opp_opp = lazy (constant "C_OPP_OPP") let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R") let coq_c_opp_one = lazy (constant "C_OPP_ONE") let coq_c_reduce = lazy (constant "C_REDUCE") let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR") let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT") let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R") let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R") let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L") let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE") let coq_c_plus_sym = lazy (constant "C_PLUS_SYM") let coq_c_red0 = lazy (constant "C_RED0") let coq_c_red1 = lazy (constant "C_RED1") let coq_c_red2 = lazy (constant "C_RED2") let coq_c_red3 = lazy (constant "C_RED3") let coq_c_red4 = lazy (constant "C_RED4") let coq_c_red5 = lazy (constant "C_RED5") let coq_c_red6 = lazy (constant "C_RED6") let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT") let coq_c_mult_assoc_reduced = lazy (constant "C_MULT_ASSOC_REDUCED") let coq_c_minus = lazy (constant "C_MINUS") let coq_c_mult_sym = lazy (constant "C_MULT_SYM") let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL") let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG") let coq_s_div_approx = lazy (constant "O_DIV_APPROX") let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE") let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE") let coq_s_sum = lazy (constant "O_SUM") let coq_s_state = lazy (constant "O_STATE") let coq_s_contradiction = lazy (constant "O_CONTRADICTION") let coq_s_merge_eq = lazy (constant "O_MERGE_EQ") let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ") let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL") let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT") let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV") (* construction for the [extract_hyp] tactic *) let coq_direction = lazy (constant "direction") let coq_d_left = lazy (constant "D_left") let coq_d_right = lazy (constant "D_right") let coq_d_mono = lazy (constant "D_mono") let coq_e_split = lazy (constant "E_SPLIT") let coq_e_extract = lazy (constant "E_EXTRACT") let coq_e_solve = lazy (constant "E_SOLVE") let coq_decompose_solve_valid = lazy (constant "decompose_solve_valid") let coq_do_reduce_lhyps = lazy (constant "do_reduce_lhyps") let coq_do_omega = lazy (constant "do_omega") (* \subsection{Construction d'expressions} *) let mk_var v = Term.mkVar (Names.id_of_string v) let mk_plus t1 t2 = Term.mkApp (Lazy.force coq_Zplus,[| t1; t2 |]) let mk_times t1 t2 = Term.mkApp (Lazy.force coq_Zmult, [| t1; t2 |]) let mk_minus t1 t2 = Term.mkApp (Lazy.force coq_Zminus, [| t1;t2 |]) let mk_eq t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_Z; t1; t2 |]) let mk_le t1 t2 = Term.mkApp (Lazy.force coq_Zle, [|t1; t2 |]) let mk_gt t1 t2 = Term.mkApp (Lazy.force coq_Zgt, [|t1; t2 |]) let mk_inv t = Term.mkApp (Lazy.force coq_Zopp, [|t |]) let mk_and t1 t2 = Term.mkApp (Lazy.force coq_and, [|t1; t2 |]) let mk_or t1 t2 = Term.mkApp (Lazy.force coq_or, [|t1; t2 |]) let mk_not t = Term.mkApp (Lazy.force coq_not, [|t |]) let mk_eq_rel t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_relation; t1; t2 |]) let mk_inj t = Term.mkApp (Lazy.force coq_inject_nat, [|t |]) let do_left t = if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop else Term.mkApp (Lazy.force coq_c_do_left, [|t |] ) let do_right t = if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop else Term.mkApp (Lazy.force coq_c_do_right, [|t |]) let do_both t1 t2 = if t1 = Lazy.force coq_c_nop then do_right t2 else if t2 = Lazy.force coq_c_nop then do_left t1 else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |]) let do_seq t1 t2 = if t1 = Lazy.force coq_c_nop then t2 else if t2 = Lazy.force coq_c_nop then t1 else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |]) let rec do_list = function | [] -> Lazy.force coq_c_nop | [x] -> x | (x::l) -> do_seq x (do_list l) let mk_integer n = let rec loop n = if n=Bigint.one then Lazy.force coq_xH else let (q,r) = Bigint.euclid n Bigint.two in Term.mkApp ((if r = Bigint.zero then Lazy.force coq_xO else Lazy.force coq_xI), [| loop q |]) in if n = Bigint.zero then Lazy.force coq_ZERO else if Bigint.is_strictly_pos n then Term.mkApp (Lazy.force coq_POS, [| loop n |]) else Term.mkApp (Lazy.force coq_NEG, [| loop (Bigint.neg n) |]) let mk_Z = mk_integer let rec mk_nat = function | 0 -> Lazy.force coq_O | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |]) let mk_list typ l = let rec loop = function | [] -> Term.mkApp (Lazy.force coq_nil, [|typ|]) | (step :: l) -> Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in loop l let mk_plist l = let rec loop = function | [] -> (Lazy.force coq_pnil) | (step :: l) -> Term.mkApp (Lazy.force coq_pcons, [| step; loop l |]) in loop l let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l