Require Export Arith. Fixpoint trivfun [n : nat] : nat := Cases n of O => O | (S m) => (trivfun m) end. (* essaie de parametre variables non locaux:*) Parameter varessai:nat. Lemma first_try (trivfun varessai) = O. Functional Induction trivfun varessai. Trivial. Simpl. Assumption. Defined. Functional Scheme triv_ind := Induction for trivfun. Lemma bisrepetita:(n' : nat) (trivfun n') = O. Intros n'. Functional Induction trivfun n'. Trivial. Simpl. Assumption. Save. Fixpoint iseven [n : nat] : bool := Cases n of O => true | (S (S m)) => (iseven m) | _ => false end. Fixpoint funex [n : nat] : nat := Cases (iseven n) of true => n | false => Cases n of O => O | (S r) => (funex r) end end. Fixpoint nat_equal_bool [n : nat] : nat -> bool := [m : nat] Cases n of O => Cases m of O => true | _ => false end | (S p) => Cases m of O => false | (S q) => (nat_equal_bool p q) end end. Require Export Div2. Lemma div2_inf: (n : nat) (le (div2 n) n). Intros n. (Functional Induction div2 n). Auto with arith. Auto with arith. Simpl. Apply le_S. Apply le_n_S. Exact H. Qed. Fixpoint essai [x : nat] : nat * nat -> nat := [p : nat * nat] ( Case p of [n, m : ?] Cases n of O => O | (S q) => Cases x of O => (S O) | (S r) => (S (essai r (q, m))) end end end ). Lemma essai_essai: (x : nat) (p : nat * nat) ( Case p of [n, m : ?] (lt O n) -> (lt O (essai x p)) end ). Intros x p. (Functional Induction essai x p); Intros. Inversion H. Simpl; Try Abstract ( Auto with arith ). Simpl; Try Abstract ( Auto with arith ). Qed. Fixpoint plus_x_not_five' [n : nat] : nat -> nat := [m : nat] Cases n of O => O | (S q) => Cases m of O => (S (plus_x_not_five' q O)) | (S r) => (S (plus_x_not_five' q (S r))) end end. Lemma notplusfive': (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five' x y) = x. Intros x y. (Functional Induction plus_x_not_five' x y); Intros hyp. Auto. Inversion hyp. Intros. Simpl. Auto. Qed. Fixpoint plus_x_not_five [n : nat] : nat -> nat := [m : nat] Cases n of O => O | (S q) => Cases (nat_equal_bool m (S q)) of true => (S (plus_x_not_five q m)) | false => (S (plus_x_not_five q m)) end end. Lemma notplusfive: (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five x y) = x. Intros x y. Unfold plus_x_not_five. (Functional Induction plus_x_not_five x y) ; Simpl; Intros hyp; Fold plus_x_not_five. Auto. Auto. Auto. Qed. Fixpoint plus_x_not_five'' [n : nat] : nat -> nat := [m : nat] let x = (nat_equal_bool m (S (S (S (S (S O)))))) in let y = O in Cases n of O => y | (S q) => let recapp = (plus_x_not_five'' q m) in Cases x of true => (S recapp) | false => (S recapp) end end. Lemma notplusfive'': (x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five'' x y) = x. Intros a b. Unfold plus_x_not_five''. (Functional Induction plus_x_not_five'' a b); Intros hyp; Simpl; Auto. Qed. Lemma iseq_eq: (n, m : nat) n = m -> (nat_equal_bool n m) = true. Intros n m. Unfold nat_equal_bool. (Functional Induction nat_equal_bool n m); Simpl; Intros hyp; Auto. Inversion hyp. Inversion hyp. Qed. Lemma iseq_eq': (n, m : nat) (nat_equal_bool n m) = true -> n = m. Intros n m. Unfold nat_equal_bool. (Functional Induction nat_equal_bool n m); Simpl; Intros eg; Auto. Inversion eg. Inversion eg. Qed. Definition iszero : nat -> bool := [n : nat] Cases n of O => true | _ => false end. Inductive istrue : bool -> Prop := istrue0: (istrue true) . Lemma toto: (n : nat) n = O -> (istrue (iszero n)). Intros x. (Functional Induction iszero x); Intros eg; Simpl. Apply istrue0. Inversion eg. Qed. Lemma inf_x_plusxy': (x, y : nat) (le x (plus x y)). Intros n m. (Functional Induction plus n m); Intros. Auto with arith. Auto with arith. Qed. Lemma inf_x_plusxy'': (x : nat) (le x (plus x O)). Intros n. Unfold plus. (Functional Induction plus n O); Intros. Auto with arith. Apply le_n_S. Assumption. Qed. Lemma inf_x_plusxy''': (x : nat) (le x (plus O x)). Intros n. (Functional Induction plus O n); Intros;Auto with arith. Qed. Fixpoint mod2 [n : nat] : nat := Cases n of O => O | (S (S m)) => (S (mod2 m)) | _ => O end. Lemma princ_mod2: (n : nat) (le (mod2 n) n). Intros n. (Functional Induction mod2 n); Simpl; Auto with arith. Qed. Definition isfour : nat -> bool := [n : nat] Cases n of (S (S (S (S O)))) => true | _ => false end. Definition isononeorfour : nat -> bool := [n : nat] Cases n of (S O) => true | (S (S (S (S O)))) => true | _ => false end. Lemma toto'': (n : nat) (istrue (isfour n)) -> (istrue (isononeorfour n)). Intros n. (Functional Induction isononeorfour n); Intros istr; Simpl; Inversion istr. Apply istrue0. Qed. Lemma toto': (n, m : nat) n = (S (S (S (S O)))) -> (istrue (isononeorfour n)). Intros n. (Functional Induction isononeorfour n); Intros m istr; Inversion istr. Apply istrue0. Qed. Definition ftest : nat -> nat -> nat := [n, m : nat] Cases n of O => Cases m of O => O | _ => (S O) end | (S p) => O end. Lemma test1: (n, m : nat) (le (ftest n m) (S (S O))). Intros n m. (Functional Induction ftest n m); Auto with arith. Qed. Lemma test11: (m : nat) (le (ftest O m) (S (S O))). Intros m. (Functional Induction ftest O m). Auto with arith. Auto with arith. Qed. Definition ftest4 : nat -> nat -> nat := [n, m : nat] Cases n of O => Cases m of O => O | (S q) => (S O) end | (S p) => Cases m of O => O | (S r) => (S O) end end. Lemma test4: (n, m : nat) (le (ftest n m) (S (S O))). Intros n m. (Functional Induction ftest n m); Auto with arith. Qed. Lemma test4': (n, m : nat) (le (ftest4 (S n) m) (S (S O))). Intros n m. (Functional Induction ftest4 (S n) m). Auto with arith. Auto with arith. Qed. Definition ftest44 : nat * nat -> nat -> nat -> nat := [x : nat * nat] [n, m : nat] ( Case x of [p, q : ?] Cases n of O => Cases m of O => O | (S q) => (S O) end | (S p) => Cases m of O => O | (S r) => (S O) end end end ). Lemma test44: (pq : nat * nat) (n, m, o, r, s : nat) (le (ftest44 pq n (S m)) (S (S O))). Intros pq n m o r s. (Functional Induction ftest44 pq n (S m)). Auto with arith. Auto with arith. Auto with arith. Auto with arith. Qed. Fixpoint ftest2 [n : nat] : nat -> nat := [m : nat] Cases n of O => Cases m of O => O | (S q) => O end | (S p) => (ftest2 p m) end. Lemma test2: (n, m : nat) (le (ftest2 n m) (S (S O))). Intros n m. (Functional Induction ftest2 n m) ; Simpl; Intros; Auto. Qed. Fixpoint ftest3 [n : nat] : nat -> nat := [m : nat] Cases n of O => O | (S p) => Cases m of O => (ftest3 p O) | (S r) => O end end. Lemma test3: (n, m : nat) (le (ftest3 n m) (S (S O))). Intros n m. (Functional Induction ftest3 n m). Intros. Auto. Intros. Auto. Intros. Simpl. Auto. Qed. Fixpoint ftest5 [n : nat] : nat -> nat := [m : nat] Cases n of O => O | (S p) => Cases m of O => (ftest5 p O) | (S r) => (ftest5 p r) end end. Lemma test5: (n, m : nat) (le (ftest5 n m) (S (S O))). Intros n m. (Functional Induction ftest5 n m). Intros. Auto. Intros. Auto. Intros. Simpl. Auto. Qed. Definition ftest7 : (n : nat) nat := [n : nat] Cases (ftest5 n O) of O => O | (S r) => O end. Lemma essai7: (Hrec : (n : nat) (ftest5 n O) = O -> (le (ftest7 n) (S (S O)))) (Hrec0 : (n, r : nat) (ftest5 n O) = (S r) -> (le (ftest7 n) (S (S O)))) (n : nat) (le (ftest7 n) (S (S O))). Intros hyp1 hyp2 n. Unfold ftest7. (Functional Induction ftest7 n); Auto. Qed. Fixpoint ftest6 [n : nat] : nat -> nat := [m : nat] Cases n of O => O | (S p) => Cases (ftest5 p O) of O => (ftest6 p O) | (S r) => (ftest6 p r) end end. Lemma princ6: ((n, m : nat) n = O -> (le (ftest6 O m) (S (S O)))) -> ((n, m, p : nat) (le (ftest6 p O) (S (S O))) -> (ftest5 p O) = O -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) -> ((n, m, p, r : nat) (le (ftest6 p r) (S (S O))) -> (ftest5 p O) = (S r) -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) -> (x, y : nat) (le (ftest6 x y) (S (S O))). Intros hyp1 hyp2 hyp3 n m. Generalize hyp1 hyp2 hyp3. Clear hyp1 hyp2 hyp3. (Functional Induction ftest6 n m);Auto. Qed. Lemma essai6: (n, m : nat) (le (ftest6 n m) (S (S O))). Intros n m. Unfold ftest6. (Functional Induction ftest6 n m); Simpl; Auto. Qed.