(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* kn = kn' | ConstRef _ -> false | VarRef _ -> assert false let modpath_of_r r = match r with | ConstRef kn -> con_modpath kn | IndRef (kn,_) | ConstructRef ((kn,_),_) -> modpath kn | VarRef _ -> assert false let label_of_r r = match r with | ConstRef kn -> con_label kn | IndRef (kn,_) | ConstructRef ((kn,_),_) -> label kn | VarRef _ -> assert false let current_toplevel () = fst (Lib.current_prefix ()) let rec base_mp = function | MPdot (mp,l) -> base_mp mp | mp -> mp let is_modfile = function | MPfile _ -> true | _ -> false let is_toplevel mp = mp = initial_path || mp = current_toplevel () let at_toplevel mp = is_modfile mp || is_toplevel mp let visible_kn kn = at_toplevel (base_mp (modpath kn)) let visible_con kn = at_toplevel (base_mp (con_modpath kn)) (*S The main tables: constants, inductives, records, ... *) (*s Constants tables. *) let terms = ref (Cmap.empty : ml_decl Cmap.t) let init_terms () = terms := Cmap.empty let add_term kn d = terms := Cmap.add kn d !terms let lookup_term kn = Cmap.find kn !terms let types = ref (Cmap.empty : ml_schema Cmap.t) let init_types () = types := Cmap.empty let add_type kn s = types := Cmap.add kn s !types let lookup_type kn = Cmap.find kn !types (*s Inductives table. *) let inductives = ref (KNmap.empty : ml_ind KNmap.t) let init_inductives () = inductives := KNmap.empty let add_ind kn m = inductives := KNmap.add kn m !inductives let lookup_ind kn = KNmap.find kn !inductives (*s Recursors table. *) let recursors = ref Cset.empty let init_recursors () = recursors := Cset.empty let add_recursors env kn = let make_kn id = make_con (modpath kn) empty_dirpath (label_of_id id) in let mib = Environ.lookup_mind kn env in Array.iter (fun mip -> let id = mip.mind_typename in let kn_rec = make_kn (Nameops.add_suffix id "_rec") and kn_rect = make_kn (Nameops.add_suffix id "_rect") in recursors := Cset.add kn_rec (Cset.add kn_rect !recursors)) mib.mind_packets let is_recursor = function | ConstRef kn -> Cset.mem kn !recursors | _ -> false (*s Record tables. *) let projs = ref (Refmap.empty : int Refmap.t) let init_projs () = projs := Refmap.empty let add_projection n kn = projs := Refmap.add (ConstRef kn) n !projs let is_projection r = Refmap.mem r !projs let projection_arity r = Refmap.find r !projs (*s Tables synchronization. *) let reset_tables () = init_terms (); init_types (); init_inductives (); init_recursors (); init_projs () (*s Printing. *) (* The following functions work even on objects not in [Global.env ()]. WARNING: for inductive objects, an extract_inductive must have been done before. *) let id_of_global = function | ConstRef kn -> let _,_,l = repr_con kn in id_of_label l | IndRef (kn,i) -> (lookup_ind kn).ind_packets.(i).ip_typename | ConstructRef ((kn,i),j) -> (lookup_ind kn).ind_packets.(i).ip_consnames.(j-1) | _ -> assert false let pr_global r = pr_id (id_of_global r) (*S Warning and Error messages. *) let err s = errorlabstrm "Extraction" s let error_axiom_scheme r i = err (str "The type scheme axiom " ++ spc () ++ pr_global r ++ spc () ++ str "needs " ++ pr_int i ++ str " type variable(s).") let warning_info_ax r = msg_warning (str "You must realize axiom " ++ pr_global r ++ str " in the extracted code.") let warning_log_ax r = msg_warning (str "This extraction depends on logical axiom" ++ spc () ++ pr_global r ++ str "." ++ spc() ++ str "Having false logical axiom in the environment when extracting" ++ spc () ++ str "may lead to incorrect or non-terminating ML terms.") let check_inside_module () = try ignore (Lib.what_is_opened ()); Options.if_verbose warning ("Extraction inside an opened module is experimental.\n"^ "In case of problem, close it first.\n"); Pp.flush_all () with Not_found -> () let check_inside_section () = if Lib.sections_are_opened () then err (str "You can't do that within a section." ++ fnl () ++ str "Close it and try again.") let error_constant r = err (Printer.pr_global r ++ str " is not a constant.") let error_inductive r = err (Printer.pr_global r ++ spc () ++ str "is not an inductive type.") let error_nb_cons () = err (str "Not the right number of constructors.") let error_module_clash s = err (str ("There are two Coq modules with ML name " ^ s ^".\n") ++ str "This is not allowed in ML. Please do some renaming first.") let error_unknown_module m = err (str "Module" ++ spc () ++ pr_qualid m ++ spc () ++ str "not found.") let error_toplevel () = err (str "Toplevel pseudo-ML language can be used only at Coq toplevel.\n" ++ str "You should use Extraction Language Ocaml or Haskell before.") let error_scheme () = err (str "No Scheme modular extraction available yet.") let error_not_visible r = err (Printer.pr_global r ++ str " is not directly visible.\n" ++ str "For example, it may be inside an applied functor." ++ str "Use Recursive Extraction to get the whole environment.") let error_unqualified_name s1 s2 = err (str (s1 ^ " is used in " ^ s2 ^ " where it cannot be disambiguated\n" ^ "in ML from another name sharing the same basename.\n" ^ "Please do some renaming.\n")) let error_MPfile_as_mod d = err (str ("The whole file "^(string_of_dirpath d)^".v is used somewhere as a module.\n"^ "Extraction cannot currently deal with this situation.\n")) let error_record r = err (str "Record " ++ Printer.pr_global r ++ str " has an anonymous field." ++ fnl () ++ str "To help extraction, please use an explicit name.") (*S The Extraction auxiliary commands *) (*s Extraction AutoInline *) let auto_inline_ref = ref true let auto_inline () = !auto_inline_ref let _ = declare_bool_option {optsync = true; optname = "Extraction AutoInline"; optkey = SecondaryTable ("Extraction", "AutoInline"); optread = auto_inline; optwrite = (:=) auto_inline_ref} (*s Extraction TypeExpand *) let type_expand_ref = ref true let type_expand () = !type_expand_ref let _ = declare_bool_option {optsync = true; optname = "Extraction TypeExpand"; optkey = SecondaryTable ("Extraction", "TypeExpand"); optread = type_expand; optwrite = (:=) type_expand_ref} (*s Extraction Optimize *) type opt_flag = { opt_kill_dum : bool; (* 1 *) opt_fix_fun : bool; (* 2 *) opt_case_iot : bool; (* 4 *) opt_case_idr : bool; (* 8 *) opt_case_idg : bool; (* 16 *) opt_case_cst : bool; (* 32 *) opt_case_fun : bool; (* 64 *) opt_case_app : bool; (* 128 *) opt_let_app : bool; (* 256 *) opt_lin_let : bool; (* 512 *) opt_lin_beta : bool } (* 1024 *) let kth_digit n k = (n land (1 lsl k) <> 0) let flag_of_int n = { opt_kill_dum = kth_digit n 0; opt_fix_fun = kth_digit n 1; opt_case_iot = kth_digit n 2; opt_case_idr = kth_digit n 3; opt_case_idg = kth_digit n 4; opt_case_cst = kth_digit n 5; opt_case_fun = kth_digit n 6; opt_case_app = kth_digit n 7; opt_let_app = kth_digit n 8; opt_lin_let = kth_digit n 9; opt_lin_beta = kth_digit n 10 } (* For the moment, we allow by default everything except the type-unsafe optimization [opt_case_idg]. *) let int_flag_init = 1 + 2 + 4 + 8 + 32 + 64 + 128 + 256 + 512 + 1024 let int_flag_ref = ref int_flag_init let opt_flag_ref = ref (flag_of_int int_flag_init) let chg_flag n = int_flag_ref := n; opt_flag_ref := flag_of_int n let optims () = !opt_flag_ref let _ = declare_bool_option {optsync = true; optname = "Extraction Optimize"; optkey = SecondaryTable ("Extraction", "Optimize"); optread = (fun () -> !int_flag_ref <> 0); optwrite = (fun b -> chg_flag (if b then int_flag_init else 0))} let _ = declare_int_option { optsync = true; optname = "Extraction Flag"; optkey = SecondaryTable("Extraction","Flag"); optread = (fun _ -> Some !int_flag_ref); optwrite = (function | None -> chg_flag 0 | Some i -> chg_flag (max i 0))} (*s Extraction Lang *) type lang = Ocaml | Haskell | Scheme | Toplevel let lang_ref = ref Ocaml let lang () = !lang_ref let (extr_lang,_) = declare_object {(default_object "Extraction Lang") with cache_function = (fun (_,l) -> lang_ref := l); load_function = (fun _ (_,l) -> lang_ref := l); export_function = (fun x -> Some x)} let _ = declare_summary "Extraction Lang" { freeze_function = (fun () -> !lang_ref); unfreeze_function = ((:=) lang_ref); init_function = (fun () -> lang_ref := Ocaml); survive_module = false; survive_section = true } let extraction_language x = Lib.add_anonymous_leaf (extr_lang x) (*s Extraction Inline/NoInline *) let empty_inline_table = (Refset.empty,Refset.empty) let inline_table = ref empty_inline_table let to_inline r = Refset.mem r (fst !inline_table) let to_keep r = Refset.mem r (snd !inline_table) let add_inline_entries b l = let f b = if b then Refset.add else Refset.remove in let i,k = !inline_table in inline_table := (List.fold_right (f b) l i), (List.fold_right (f (not b)) l k) (* Registration of operations for rollback. *) let (inline_extraction,_) = declare_object {(default_object "Extraction Inline") with cache_function = (fun (_,(b,l)) -> add_inline_entries b l); load_function = (fun _ (_,(b,l)) -> add_inline_entries b l); export_function = (fun x -> Some x); classify_function = (fun (_,o) -> Substitute o); (*CSC: The following substitution may istantiate a realized parameter. The right solution would be to make the substitution erase the realizer from the table. However, this is not allowed by Coq. In this particular case, though, keeping the realizer is place seems to be harmless since the current code looks for a realizer only when the constant is a parameter. However, if this behaviour changes subtle bugs can happear in the future. *) subst_function = (fun (_,s,(b,l)) -> (b,(List.map (fun x -> fst (subst_global s x)) l)))} let _ = declare_summary "Extraction Inline" { freeze_function = (fun () -> !inline_table); unfreeze_function = ((:=) inline_table); init_function = (fun () -> inline_table := empty_inline_table); survive_module = false; survive_section = true } (* Grammar entries. *) let extraction_inline b l = check_inside_section (); check_inside_module (); let refs = List.map Nametab.global l in List.iter (fun r -> match r with | ConstRef _ -> () | _ -> error_constant r) refs; Lib.add_anonymous_leaf (inline_extraction (b,refs)) (* Printing part *) let print_extraction_inline () = let (i,n)= !inline_table in let i'= Refset.filter (function ConstRef _ -> true | _ -> false) i in msg (str "Extraction Inline:" ++ fnl () ++ Refset.fold (fun r p -> (p ++ str " " ++ Printer.pr_global r ++ fnl ())) i' (mt ()) ++ str "Extraction NoInline:" ++ fnl () ++ Refset.fold (fun r p -> (p ++ str " " ++ Printer.pr_global r ++ fnl ())) n (mt ())) (* Reset part *) let (reset_inline,_) = declare_object {(default_object "Reset Extraction Inline") with cache_function = (fun (_,_)-> inline_table := empty_inline_table); load_function = (fun _ (_,_)-> inline_table := empty_inline_table); export_function = (fun x -> Some x)} let reset_extraction_inline () = Lib.add_anonymous_leaf (reset_inline ()) (*s Extract Constant/Inductive. *) (* UGLY HACK: to be defined in [extraction.ml] *) let use_type_scheme_nb_args, register_type_scheme_nb_args = let r = ref (fun _ _ -> 0) in (fun x y -> !r x y), (:=) r let customs = ref Refmap.empty let add_custom r ids s = customs := Refmap.add r (ids,s) !customs let is_custom r = Refmap.mem r !customs let is_inline_custom r = (is_custom r) && (to_inline r) let find_custom r = snd (Refmap.find r !customs) let find_type_custom r = Refmap.find r !customs (* Registration of operations for rollback. *) let (in_customs,_) = declare_object {(default_object "ML extractions") with cache_function = (fun (_,(r,ids,s)) -> add_custom r ids s); load_function = (fun _ (_,(r,ids,s)) -> add_custom r ids s); export_function = (fun x -> Some x)} let _ = declare_summary "ML extractions" { freeze_function = (fun () -> !customs); unfreeze_function = ((:=) customs); init_function = (fun () -> customs := Refmap.empty); survive_module = false; survive_section = true } (* Grammar entries. *) let extract_constant_inline inline r ids s = check_inside_section (); check_inside_module (); let g = Nametab.global r in match g with | ConstRef kn -> let env = Global.env () in let typ = Environ.constant_type env kn in let typ = Reduction.whd_betadeltaiota env typ in if Reduction.is_arity env typ then begin let nargs = use_type_scheme_nb_args env typ in if List.length ids <> nargs then error_axiom_scheme g nargs end; Lib.add_anonymous_leaf (inline_extraction (inline,[g])); Lib.add_anonymous_leaf (in_customs (g,ids,s)) | _ -> error_constant g let extract_inductive r (s,l) = check_inside_section (); check_inside_module (); let g = Nametab.global r in match g with | IndRef ((kn,i) as ip) -> let mib = Global.lookup_mind kn in let n = Array.length mib.mind_packets.(i).mind_consnames in if n <> List.length l then error_nb_cons (); Lib.add_anonymous_leaf (inline_extraction (true,[g])); Lib.add_anonymous_leaf (in_customs (g,[],s)); list_iter_i (fun j s -> let g = ConstructRef (ip,succ j) in Lib.add_anonymous_leaf (inline_extraction (true,[g])); Lib.add_anonymous_leaf (in_customs (g,[],s))) l | _ -> error_inductive g