(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Idset.add (id_of_string s)) [ "case"; "class"; "data"; "default"; "deriving"; "do"; "else"; "if"; "import"; "in"; "infix"; "infixl"; "infixr"; "instance"; "let"; "module"; "newtype"; "of"; "then"; "type"; "where"; "_"; "__"; "as"; "qualified"; "hiding" ; "unit" ] Idset.empty let preamble prm used_modules (mldummy,tdummy,tunknown) = let pp_mp = function | MPfile d -> pr_upper_id (List.hd (repr_dirpath d)) | _ -> assert false in str "module " ++ pr_upper_id prm.mod_name ++ str " where" ++ fnl () ++ fnl() ++ str "import qualified Prelude" ++ fnl() ++ prlist (fun mp -> str "import qualified " ++ pp_mp mp ++ fnl ()) used_modules ++ fnl () ++ (if mldummy then str "__ = Prelude.error \"Logical or arity value used\"" ++ fnl () ++ fnl() else mt()) let preamble_sig prm used_modules (mldummy,tdummy,tunknown) = failwith "TODO" let pp_abst = function | [] -> (mt ()) | l -> (str "\\" ++ prlist_with_sep (fun () -> (str " ")) pr_id l ++ str " ->" ++ spc ()) let pr_lower_id id = pr_id (lowercase_id id) (*s The pretty-printing functor. *) module Make = functor(P : Mlpp_param) -> struct let local_mp = ref initial_path let pp_global r = P.pp_global !local_mp r let empty_env () = [], P.globals() (*s Pretty-printing of types. [par] is a boolean indicating whether parentheses are needed or not. *) let rec pp_type par vl t = let rec pp_rec par = function | Tmeta _ | Tvar' _ -> assert false | Tvar i -> (try pr_id (List.nth vl (pred i)) with _ -> (str "a" ++ int i)) | Tglob (r,[]) -> pp_global r | Tglob (r,l) -> pp_par par (pp_global r ++ spc () ++ prlist_with_sep spc (pp_type true vl) l) | Tarr (t1,t2) -> pp_par par (pp_rec true t1 ++ spc () ++ str "->" ++ spc () ++ pp_rec false t2) | Tdummy -> str "()" | Tunknown -> str "()" | Tcustom s -> str s in hov 0 (pp_rec par t) (*s Pretty-printing of expressions. [par] indicates whether parentheses are needed or not. [env] is the list of names for the de Bruijn variables. [args] is the list of collected arguments (already pretty-printed). *) let expr_needs_par = function | MLlam _ -> true | MLcase _ -> true | _ -> false let rec pp_expr par env args = let par' = args <> [] || par and apply st = pp_apply st par args in function | MLrel n -> let id = get_db_name n env in apply (pr_id id) | MLapp (f,args') -> let stl = List.map (pp_expr true env []) args' in pp_expr par env (stl @ args) f | MLlam _ as a -> let fl,a' = collect_lams a in let fl,env' = push_vars fl env in let st = (pp_abst (List.rev fl) ++ pp_expr false env' [] a') in apply (pp_par par' st) | MLletin (id,a1,a2) -> assert (args=[]); let i,env' = push_vars [id] env in let pp_id = pr_id (List.hd i) and pp_a1 = pp_expr false env [] a1 and pp_a2 = pp_expr (not par && expr_needs_par a2) env' [] a2 in hv 0 (pp_par par (hv 0 (hov 5 (str "let" ++ spc () ++ pp_id ++ str " = " ++ pp_a1) ++ spc () ++ str "in") ++ spc () ++ hov 0 pp_a2)) | MLglob r -> apply (pp_global r) | MLcons (r,[]) -> assert (args=[]); pp_global r | MLcons (r,[a]) -> assert (args=[]); pp_par par (pp_global r ++ spc () ++ pp_expr true env [] a) | MLcons (r,args') -> assert (args=[]); pp_par par (pp_global r ++ spc () ++ prlist_with_sep spc (pp_expr true env []) args') | MLcase (t, pv) -> apply (pp_par par' (v 0 (str "case " ++ pp_expr false env [] t ++ str " of" ++ fnl () ++ str " " ++ pp_pat env pv))) | MLfix (i,ids,defs) -> let ids',env' = push_vars (List.rev (Array.to_list ids)) env in pp_fix par env' i (Array.of_list (List.rev ids'),defs) args | MLexn s -> (* An [MLexn] may be applied, but I don't really care. *) pp_par par (str "Prelude.error" ++ spc () ++ qs s) | MLdummy -> str "__" (* An [MLdummy] may be applied, but I don't really care. *) | MLcast (a,t) -> pp_expr par env args a | MLmagic a -> pp_expr par env args a and pp_pat env pv = let pp_one_pat (name,ids,t) = let ids,env' = push_vars (List.rev ids) env in let par = expr_needs_par t in hov 2 (pp_global name ++ (match ids with | [] -> mt () | _ -> (str " " ++ prlist_with_sep (fun () -> (spc ())) pr_id (List.rev ids))) ++ str " ->" ++ spc () ++ pp_expr par env' [] t) in (prvect_with_sep (fun () -> (fnl () ++ str " ")) pp_one_pat pv) (*s names of the functions ([ids]) are already pushed in [env], and passed here just for convenience. *) and pp_fix par env i (ids,bl) args = pp_par par (v 0 (v 2 (str "let" ++ fnl () ++ prvect_with_sep fnl (fun (fi,ti) -> pp_function env (pr_id fi) ti) (array_map2 (fun a b -> a,b) ids bl)) ++ fnl () ++ hov 2 (str "in " ++ pp_apply (pr_id ids.(i)) false args))) and pp_function env f t = let bl,t' = collect_lams t in let bl,env' = push_vars bl env in (f ++ pr_binding (List.rev bl) ++ str " =" ++ fnl () ++ str " " ++ hov 2 (pp_expr false env' [] t')) (*s Pretty-printing of inductive types declaration. *) let pp_comment s = str "-- " ++ s ++ fnl () let pp_logical_ind packet = pp_comment (pr_id packet.ip_typename ++ str " : logical inductive") ++ pp_comment (str "with constructors : " ++ prvect_with_sep spc pr_id packet.ip_consnames) let pp_singleton kn packet = let l = rename_tvars keywords packet.ip_vars in let l' = List.rev l in hov 2 (str "type " ++ pp_global (IndRef (kn,0)) ++ spc () ++ prlist_with_sep spc pr_id l ++ (if l <> [] then str " " else mt ()) ++ str "=" ++ spc () ++ pp_type false l' (List.hd packet.ip_types.(0)) ++ fnl () ++ pp_comment (str "singleton inductive, whose constructor was " ++ pr_id packet.ip_consnames.(0))) let pp_one_ind ip pl cv = let pl = rename_tvars keywords pl in let pp_constructor (r,l) = (pp_global r ++ match l with | [] -> (mt ()) | _ -> (str " " ++ prlist_with_sep (fun () -> (str " ")) (pp_type true (List.rev pl)) l)) in str (if cv = [||] then "type " else "data ") ++ pp_global (IndRef ip) ++ str " " ++ prlist_with_sep (fun () -> str " ") pr_lower_id pl ++ (if pl = [] then mt () else str " ") ++ if cv = [||] then str "= () -- empty inductive" else (v 0 (str "= " ++ prvect_with_sep (fun () -> fnl () ++ str " | ") pp_constructor (Array.mapi (fun i c -> ConstructRef (ip,i+1),c) cv))) let rec pp_ind first kn i ind = if i >= Array.length ind.ind_packets then if first then mt () else fnl () else let ip = (kn,i) in let p = ind.ind_packets.(i) in if is_custom (IndRef (kn,i)) then pp_ind first kn (i+1) ind else if p.ip_logical then pp_logical_ind p ++ pp_ind first kn (i+1) ind else pp_one_ind ip p.ip_vars p.ip_types ++ fnl () ++ pp_ind false kn (i+1) ind (*s Pretty-printing of a declaration. *) let pp_decl mp = local_mp := mp; function | Dind (kn,i) when i.ind_info = Singleton -> pp_singleton kn i.ind_packets.(0) ++ fnl () | Dind (kn,i) -> hov 0 (pp_ind true kn 0 i) | Dtype (r, l, t) -> if is_inline_custom r then mt () else let l = rename_tvars keywords l in let l' = List.rev l in hov 2 (str "type " ++ pp_global r ++ spc () ++ prlist (fun id -> pr_id id ++ str " ") l ++ str "=" ++ spc () ++ pp_type false l' t) ++ fnl () ++ fnl () | Dfix (rv, defs,_) -> let ppv = Array.map pp_global rv in prlist_with_sep (fun () -> fnl () ++ fnl ()) (fun (pi,ti) -> pp_function (empty_env ()) pi ti) (List.combine (Array.to_list ppv) (Array.to_list defs)) ++ fnl () ++ fnl () | Dterm (r, a, _) -> if is_inline_custom r then mt () else hov 0 (pp_function (empty_env ()) (pp_global r) a ++ fnl () ++ fnl ()) let pp_structure_elem mp = function | (l,SEdecl d) -> pp_decl mp d | (l,SEmodule m) -> failwith "TODO: Haskell extraction of modules not implemented yet" | (l,SEmodtype m) -> failwith "TODO: Haskell extraction of modules not implemented yet" let pp_struct = prlist (fun (mp,sel) -> prlist (pp_structure_elem mp) sel) let pp_signature s = failwith "TODO" end