(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* flag_of_type (push_rel (x,None,t) env) c | Sort (Prop Null) -> (Logic,TypeScheme) | Sort _ -> (Info,TypeScheme) | _ -> if (sort_of env t) = InProp then (Logic,Default) else (Info,Default) (*s Two particular cases of [flag_of_type]. *) let is_default env t = (flag_of_type env t = (Info, Default)) exception NotDefault of kill_reason let check_default env t = match flag_of_type env t with | _,TypeScheme -> raise (NotDefault Ktype) | Logic,_ -> raise (NotDefault Kother) | _ -> () let is_info_scheme env t = (flag_of_type env t = (Info, TypeScheme)) (*s [type_sign] gernerates a signature aimed at treating a type application. *) let rec type_sign env c = match kind_of_term (whd_betadeltaiota env none c) with | Prod (n,t,d) -> (if is_info_scheme env t then Keep else Kill Kother) :: (type_sign (push_rel_assum (n,t) env) d) | _ -> [] let rec type_scheme_nb_args env c = match kind_of_term (whd_betadeltaiota env none c) with | Prod (n,t,d) -> let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in if is_info_scheme env t then n+1 else n | _ -> 0 let _ = register_type_scheme_nb_args type_scheme_nb_args (*s [type_sign_vl] does the same, plus a type var list. *) let rec type_sign_vl env c = match kind_of_term (whd_betadeltaiota env none c) with | Prod (n,t,d) -> let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in if not (is_info_scheme env t) then Kill Kother::s, vl else Keep::s, (next_ident_away (id_of_name n) vl) :: vl | _ -> [],[] let rec nb_default_params env c = match kind_of_term (whd_betadeltaiota env none c) with | Prod (n,t,d) -> let n = nb_default_params (push_rel_assum (n,t) env) d in if is_default env t then n+1 else n | _ -> 0 (*S Management of type variable contexts. *) (* A De Bruijn variable context (db) is a context for translating Coq [Rel] into ML type [Tvar]. *) (*s From a type signature toward a type variable context (db). *) let db_from_sign s = let rec make i acc = function | [] -> acc | Keep :: l -> make (i+1) (i::acc) l | Kill _ :: l -> make i (0::acc) l in make 1 [] s (*s Create a type variable context from indications taken from an inductive type (see just below). *) let rec db_from_ind dbmap i = if i = 0 then [] else (try Intmap.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1)) (*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument of a constructor corresponds to the j-th type var of the ML inductive. *) (* \begin{itemize} \item [si] : signature of the inductive \item [i] : counter of Coq args for [(I args)] \item [j] : counter of ML type vars \item [relmax] : total args number of the constructor \end{itemize} *) let parse_ind_args si args relmax = let rec parse i j = function | [] -> Intmap.empty | Kill _ :: s -> parse (i+1) j s | Keep :: s -> (match kind_of_term args.(i-1) with | Rel k -> Intmap.add (relmax+1-k) j (parse (i+1) (j+1) s) | _ -> parse (i+1) (j+1) s) in parse 1 1 si (*S Extraction of a type. *) (* [extract_type env db c args] is used to produce an ML type from the coq term [(c args)], which is supposed to be a Coq type. *) (* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) (* [j] stands for the next ML type var. [j=0] means we do not generate ML type var anymore (in subterms for example). *) let rec extract_type env db j c args = match kind_of_term (whd_betaiotazeta c) with | App (d, args') -> (* We just accumulate the arguments. *) extract_type env db j d (Array.to_list args' @ args) | Lambda (_,_,d) -> (match args with | [] -> assert false (* otherwise the lambda would be reductible. *) | a :: args -> extract_type env db j (subst1 a d) args) | Prod (n,t,d) -> assert (args = []); let env' = push_rel_assum (n,t) env in (match flag_of_type env t with | (Info, Default) -> (* Standard case: two [extract_type] ... *) let mld = extract_type env' (0::db) j d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> Tarr (extract_type env db 0 t [], mld)) | (Info, TypeScheme) when j > 0 -> (* A new type var. *) let mld = extract_type env' (j::db) (j+1) d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> Tarr (Tdummy Ktype, mld)) | _,lvl -> let mld = extract_type env' (0::db) j d [] in (match expand env mld with | Tdummy d -> Tdummy d | _ -> let reason = if lvl=TypeScheme then Ktype else Kother in Tarr (Tdummy reason, mld))) | Sort _ -> Tdummy Ktype (* The two logical cases. *) | _ when sort_of env (applist (c, args)) = InProp -> Tdummy Kother | Rel n -> (match lookup_rel n env with | (_,Some t,_) -> extract_type env db j (lift n t) args | _ -> (* Asks [db] a translation for [n]. *) if n > List.length db then Tunknown else let n' = List.nth db (n-1) in if n' = 0 then Tunknown else Tvar n') | Const kn -> let r = ConstRef kn in let cb = lookup_constant kn env in let typ = cb.const_type in (match flag_of_type env typ with | (Info, TypeScheme) -> let mlt = extract_type_app env db (r, type_sign env typ) args in (match cb.const_body with | None -> mlt | Some _ when is_custom r -> mlt | Some lbody -> let newc = applist (Declarations.force lbody, args) in let mlt' = extract_type env db j newc [] in (* ML type abbreviations interact badly with Coq *) (* reduction, so [mlt] and [mlt'] might be different: *) (* The more precise is [mlt'], extracted after reduction *) (* The shortest is [mlt], which use abbreviations *) (* If possible, we take [mlt], otherwise [mlt']. *) if expand env mlt = expand env mlt' then mlt else mlt') | _ -> (* only other case here: Info, Default, i.e. not an ML type *) (match cb.const_body with | None -> Tunknown (* Brutal approximation ... *) | Some lbody -> (* We try to reduce. *) let newc = applist (Declarations.force lbody, args) in extract_type env db j newc [])) | Ind (kn,i) -> let s = (extract_ind env kn).ind_packets.(i).ip_sign in extract_type_app env db (IndRef (kn,i),s) args | Case _ | Fix _ | CoFix _ -> Tunknown | _ -> assert false (* [extract_maybe_type] calls [extract_type] when used on a Coq type, and otherwise returns [Tdummy] or [Tunknown] *) and extract_maybe_type env db c = let t = whd_betadeltaiota env none (type_of env c) in if isSort t then extract_type env db 0 c [] else if sort_of env t = InProp then Tdummy Kother else Tunknown (*s Auxiliary function dealing with type application. Precondition: [r] is a type scheme represented by the signature [s], and is completely applied: [List.length args = List.length s]. *) and extract_type_app env db (r,s) args = let ml_args = List.fold_right (fun (b,c) a -> if b=Keep then let p = List.length (fst (splay_prod env none (type_of env c))) in let db = iterate (fun l -> 0 :: l) p db in (extract_type_scheme env db c p) :: a else a) (List.combine s args) [] in Tglob (r, ml_args) (*S Extraction of a type scheme. *) (* [extract_type_scheme env db c p] works on a Coq term [c] which is an informative type scheme. It means that [c] is not a Coq type, but will be when applied to sufficiently many arguments ([p] in fact). This function decomposes p lambdas, with eta-expansion if needed. *) (* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *) and extract_type_scheme env db c p = if p=0 then extract_type env db 0 c [] else let c = whd_betaiotazeta c in match kind_of_term c with | Lambda (n,t,d) -> extract_type_scheme (push_rel_assum (n,t) env) db d (p-1) | _ -> let rels = fst (splay_prod env none (type_of env c)) in let env = push_rels_assum rels env in let eta_args = List.rev_map mkRel (interval 1 p) in extract_type env db 0 (lift p c) eta_args (*S Extraction of an inductive type. *) and extract_ind env kn = (* kn is supposed to be in long form *) try if KNset.mem kn !internal_call then lookup_ind kn (* Already started. *) else if visible_kn kn then lookup_ind kn (* Standard situation. *) else raise Not_found (* Never trust the table for a internal kn. *) with Not_found -> internal_call := KNset.add kn !internal_call; let mib = Environ.lookup_mind kn env in (* Everything concerning parameters. *) (* We do that first, since they are common to all the [mib]. *) let mip0 = mib.mind_packets.(0) in let npar = mib.mind_nparams in let epar = push_rel_context mib.mind_params_ctxt env in (* First pass: we store inductive signatures together with *) (* their type var list. *) let packets = Array.map (fun mip -> let b = snd (mind_arity mip) <> InProp in let ar = Inductive.type_of_inductive (mib,mip) in let s,v = if b then type_sign_vl env ar else [],[] in let t = Array.make (Array.length mip.mind_nf_lc) [] in { ip_typename = mip.mind_typename; ip_consnames = mip.mind_consnames; ip_logical = (not b); ip_sign = s; ip_vars = v; ip_types = t }) mib.mind_packets in add_ind kn {ind_info = Standard; ind_nparams = npar; ind_packets = packets}; (* Second pass: we extract constructors *) for i = 0 to mib.mind_ntypes - 1 do let p = packets.(i) in if not p.ip_logical then let types = arities_of_constructors env (kn,i) in for j = 0 to Array.length types - 1 do let t = snd (decompose_prod_n npar types.(j)) in let prods,head = dest_prod epar t in let nprods = List.length prods in let args = match kind_of_term head with | App (f,args) -> args (* [kind_of_term f = Ind ip] *) | _ -> [||] in let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in let db = db_from_ind dbmap npar in p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1) done done; (* Third pass: we determine special cases. *) let ind_info = try if not mib.mind_finite then raise (I Coinductive); if mib.mind_ntypes <> 1 then raise (I Standard); let p = packets.(0) in if p.ip_logical then raise (I Standard); if Array.length p.ip_types <> 1 then raise (I Standard); let typ = p.ip_types.(0) in let l = List.filter (fun t -> not (isDummy (expand env t))) typ in if List.length l = 1 && not (type_mem_kn kn (List.hd l)) then raise (I Singleton); if l = [] then raise (I Standard); if not mib.mind_record then raise (I Standard); let ip = (kn, 0) in let r = IndRef ip in if is_custom r then raise (I Standard); (* Now we're sure it's a record. *) (* First, we find its field names. *) let rec names_prod t = match kind_of_term t with | Prod(n,_,t) -> n::(names_prod t) | LetIn(_,_,_,t) -> names_prod t | Cast(t,_,_) -> names_prod t | _ -> [] in let field_names = list_skipn mib.mind_nparams (names_prod mip0.mind_user_lc.(0)) in assert (List.length field_names = List.length typ); let projs = ref Cset.empty in let mp,d,_ = repr_kn kn in let rec select_fields l typs = match l,typs with | [],[] -> [] | (Name id)::l, typ::typs -> if isDummy (expand env typ) then select_fields l typs else let knp = make_con mp d (label_of_id id) in if not (List.exists isKill (type2signature env typ)) then projs := Cset.add knp !projs; (ConstRef knp) :: (select_fields l typs) | Anonymous::l, typ::typs -> if isDummy (expand env typ) then select_fields l typs else error_record r | _ -> assert false in let field_glob = select_fields field_names typ in (* Is this record officially declared with its projections ? *) (* If so, we use this information. *) begin try let n = nb_default_params env (Inductive.type_of_inductive(mib,mip0)) in List.iter (option_iter (fun kn -> if Cset.mem kn !projs then add_projection n kn)) (lookup_structure ip).s_PROJ with Not_found -> () end; Record field_glob with (I info) -> info in let i = {ind_info = ind_info; ind_nparams = npar; ind_packets = packets} in add_ind kn i; internal_call := KNset.remove kn !internal_call; i (*s [extract_type_cons] extracts the type of an inductive constructor toward the corresponding list of ML types. *) (* \begin{itemize} \item [db] is a context for translating Coq [Rel] into ML type [Tvar] \item [dbmap] is a translation map (produced by a call to [parse_in_args]) \item [i] is the rank of the current product (initially [params_nb+1]) \end{itemize} *) and extract_type_cons env db dbmap c i = match kind_of_term (whd_betadeltaiota env none c) with | Prod (n,t,d) -> let env' = push_rel_assum (n,t) env in let db' = (try Intmap.find i dbmap with Not_found -> 0) :: db in let l = extract_type_cons env' db' dbmap d (i+1) in (extract_type env db 0 t []) :: l | _ -> [] (*s Recording the ML type abbreviation of a Coq type scheme constant. *) and mlt_env env r = match r with | ConstRef kn -> (try if not (visible_con kn) then raise Not_found; match lookup_term kn with | Dtype (_,vl,mlt) -> Some mlt | _ -> None with Not_found -> let cb = Environ.lookup_constant kn env in let typ = cb.const_type in match cb.const_body with | None -> None | Some l_body -> (match flag_of_type env typ with | Info,TypeScheme -> let body = Declarations.force l_body in let s,vl = type_sign_vl env typ in let db = db_from_sign s in let t = extract_type_scheme env db body (List.length s) in add_term kn (Dtype (r, vl, t)); Some t | _ -> None)) | _ -> None and expand env = type_expand (mlt_env env) and type2signature env = type_to_signature (mlt_env env) let type2sign env = type_to_sign (mlt_env env) let type_expunge env = type_expunge (mlt_env env) (*s Extraction of the type of a constant. *) let record_constant_type env kn opt_typ = try if not (visible_con kn) then raise Not_found; lookup_type kn with Not_found -> let typ = match opt_typ with | None -> constant_type env kn | Some typ -> typ in let mlt = extract_type env [] 1 typ [] in let schema = (type_maxvar mlt, mlt) in add_type kn schema; schema (*S Extraction of a term. *) (* Precondition: [(c args)] is not a type scheme, and is informative. *) (* [mle] is a ML environment [Mlenv.t]. *) (* [mlt] is the ML type we want our extraction of [(c args)] to have. *) let rec extract_term env mle mlt c args = match kind_of_term c with | App (f,a) -> extract_term env mle mlt f (Array.to_list a @ args) | Lambda (n, t, d) -> let id = id_of_name n in (match args with | a :: l -> (* We make as many [LetIn] as possible. *) let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l)) in extract_term env mle mlt d' [] | [] -> let env' = push_rel_assum (Name id, t) env in let id, a = try check_default env t; id, new_meta() with NotDefault d -> dummy_name, Tdummy d in let b = new_meta () in (* If [mlt] cannot be unified with an arrow type, then magic! *) let magic = needs_magic (mlt, Tarr (a, b)) in let d' = extract_term env' (Mlenv.push_type mle a) b d [] in put_magic_if magic (MLlam (id, d'))) | LetIn (n, c1, t1, c2) -> let id = id_of_name n in let env' = push_rel (Name id, Some c1, t1) env in let args' = List.map (lift 1) args in (try check_default env t1; let a = new_meta () in let c1' = extract_term env mle a c1 [] in (* The type of [c1'] is generalized and stored in [mle]. *) let mle' = Mlenv.push_gen mle a in MLletin (id, c1', extract_term env' mle' mlt c2 args') with NotDefault d -> let mle' = Mlenv.push_std_type mle (Tdummy d) in ast_pop (extract_term env' mle' mlt c2 args')) | Const kn -> extract_cst_app env mle mlt kn args | Construct cp -> extract_cons_app env mle mlt cp args | Rel n -> (* As soon as the expected [mlt] for the head is known, *) (* we unify it with an fresh copy of the stored type of [Rel n]. *) let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n) in extract_app env mle mlt extract_rel args | Case ({ci_ind=ip},_,c0,br) -> extract_app env mle mlt (extract_case env mle (ip,c0,br)) args | Fix ((_,i),recd) -> extract_app env mle mlt (extract_fix env mle i recd) args | CoFix (i,recd) -> extract_app env mle mlt (extract_fix env mle i recd) args | Cast (c,_,_) -> extract_term env mle mlt c args | Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false (*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *) and extract_maybe_term env mle mlt c = try check_default env (type_of env c); extract_term env mle mlt c [] with NotDefault d -> put_magic (mlt, Tdummy d) MLdummy (*s Generic way to deal with an application. *) (* We first type all arguments starting with unknown meta types. This gives us the expected type of the head. Then we use the [mk_head] to produce the ML head from this type. *) and extract_app env mle mlt mk_head args = let metas = List.map new_meta args in let type_head = type_recomp (metas, mlt) in let mlargs = List.map2 (extract_maybe_term env mle) metas args in if mlargs = [] then mk_head type_head else MLapp (mk_head type_head, mlargs) (*s Auxiliary function used to extract arguments of constant or constructor. *) and make_mlargs env e s args typs = let l = ref s in let keep () = match !l with [] -> true | b :: s -> l:=s; b=Keep in let rec f = function | [], [] -> [] | a::la, t::lt when keep() -> extract_maybe_term env e t a :: (f (la,lt)) | _::la, _::lt -> f (la,lt) | _ -> assert false in f (args,typs) (*s Extraction of a constant applied to arguments. *) and extract_cst_app env mle mlt kn args = (* First, the [ml_schema] of the constant, in expanded version. *) let nb,t = record_constant_type env kn None in let schema = nb, expand env t in (* Then the expected type of this constant. *) let metas = List.map new_meta args in (* We compare stored and expected types in two steps. *) (* First, can [kn] be applied to all args ? *) let a = new_meta () in let magic1 = needs_magic (type_recomp (metas, a), instantiation schema) in (* Second, is the resulting type compatible with the expected type [mlt] ? *) let magic2 = needs_magic (a, mlt) in (* The internal head receives a magic if [magic1] *) let head = put_magic_if magic1 (MLglob (ConstRef kn)) in (* Now, the extraction of the arguments. *) let s = type2signature env (snd schema) in let ls = List.length s in let la = List.length args in let mla = make_mlargs env mle s args metas in let mla = if not magic1 then try let l,l' = list_chop (projection_arity (ConstRef kn)) mla in if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l' else mla with _ -> mla else mla in (* Different situations depending of the number of arguments: *) if ls = 0 then put_magic_if magic2 head else if List.mem Keep s then if la >= ls || not (List.exists isKill s) then put_magic_if (magic2 && not magic1) (MLapp (head, mla)) else (* Not enough arguments. We complete via eta-expansion. *) let ls' = ls-la in let s' = list_lastn ls' s in let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in put_magic_if magic2 (anonym_or_dummy_lams (MLapp (head, mla)) s') else if List.mem (Kill Kother) s then (* In the special case of always false signature, one dummy lam is left. *) (* So a [MLdummy] is left accordingly. *) if la >= ls then put_magic_if (magic2 && not magic1) (MLapp (head, MLdummy :: mla)) else put_magic_if magic2 (dummy_lams head (ls-la-1)) else (* s is made only of [Kill Ktype] *) if la >= ls then put_magic_if (magic2 && not magic1) (MLapp (head, mla)) else put_magic_if magic2 (dummy_lams head (ls-la)) (*s Extraction of an inductive constructor applied to arguments. *) (* \begin{itemize} \item In ML, contructor arguments are uncurryfied. \item We managed to suppress logical parts inside inductive definitions, but they must appears outside (for partial applications for instance) \item We also suppressed all Coq parameters to the inductives, since they are fixed, and thus are not used for the computation. \end{itemize} *) and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args = (* First, we build the type of the constructor, stored in small pieces. *) let mi = extract_ind env kn in let params_nb = mi.ind_nparams in let oi = mi.ind_packets.(i) in let nb_tvars = List.length oi.ip_vars and types = List.map (expand env) oi.ip_types.(j-1) in let list_tvar = List.map (fun i -> Tvar i) (interval 1 nb_tvars) in let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in let type_cons = instantiation (nb_tvars, type_cons) in (* Then, the usual variables [s], [ls], [la], ... *) let s = List.map (type2sign env) types in let ls = List.length s in let la = List.length args in assert (la <= ls + params_nb); let la' = max 0 (la - params_nb) in let args' = list_lastn la' args in (* Now, we build the expected type of the constructor *) let metas = List.map new_meta args' in (* If stored and expected types differ, then magic! *) let a = new_meta () in let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in let magic2 = needs_magic (a, mlt) in let head mla = if mi.ind_info = Singleton then put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *) else put_magic_if magic1 (MLcons (mi.ind_info, ConstructRef cp, mla)) in (* Different situations depending of the number of arguments: *) if la < params_nb then let head' = head (eta_args_sign ls s) in put_magic_if magic2 (dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la)) else let mla = make_mlargs env mle s args' metas in if la = ls + params_nb then put_magic_if (magic2 && not magic1) (head mla) else (* [ params_nb <= la <= ls + params_nb ] *) let ls' = params_nb + ls - la in let s' = list_lastn ls' s in let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in put_magic_if magic2 (anonym_or_dummy_lams (head mla) s') (*S Extraction of a case. *) and extract_case env mle ((kn,i) as ip,c,br) mlt = (* [br]: bodies of each branch (in functional form) *) (* [ni]: number of arguments without parameters in each branch *) let ni = mis_constr_nargs_env env ip in let br_size = Array.length br in assert (Array.length ni = br_size); if br_size = 0 then begin add_recursors env kn; (* May have passed unseen if logical ... *) MLexn "absurd case" end else (* [c] has an inductive type, and is not a type scheme type. *) let t = type_of env c in (* The only non-informative case: [c] is of sort [Prop] *) if (sort_of env t) = InProp then begin add_recursors env kn; (* May have passed unseen if logical ... *) (* Logical singleton case: *) (* [match c with C i j k -> t] becomes [t'] *) assert (br_size = 1); let s = iterate (fun l -> Kill Kother :: l) ni.(0) [] in let mlt = iterate (fun t -> Tarr (Tdummy Kother, t)) ni.(0) mlt in let e = extract_maybe_term env mle mlt br.(0) in snd (case_expunge s e) end else let mi = extract_ind env kn in let oi = mi.ind_packets.(i) in let metas = Array.init (List.length oi.ip_vars) new_meta in (* The extraction of the head. *) let type_head = Tglob (IndRef ip, Array.to_list metas) in let a = extract_term env mle type_head c [] in (* The extraction of each branch. *) let extract_branch i = (* The types of the arguments of the corresponding constructor. *) let f t = type_subst_vect metas (expand env t) in let l = List.map f oi.ip_types.(i) in (* the corresponding signature *) let s = List.map (type2sign env) oi.ip_types.(i) in (* Extraction of the branch (in functional form). *) let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in (* We suppress dummy arguments according to signature. *) let ids,e = case_expunge s e in (ConstructRef (ip,i+1), List.rev ids, e) in if mi.ind_info = Singleton then begin (* Informative singleton case: *) (* [match c with C i -> t] becomes [let i = c' in t'] *) assert (br_size = 1); let (_,ids,e') = extract_branch 0 in assert (List.length ids = 1); MLletin (List.hd ids,a,e') end else (* Standard case: we apply [extract_branch]. *) MLcase (mi.ind_info, a, Array.init br_size extract_branch) (*s Extraction of a (co)-fixpoint. *) and extract_fix env mle i (fi,ti,ci as recd) mlt = let env = push_rec_types recd env in let metas = Array.map new_meta fi in metas.(i) <- mlt; let mle = Array.fold_left Mlenv.push_type mle metas in let ei = array_map2 (extract_maybe_term env mle) metas ci in MLfix (i, Array.map id_of_name fi, ei) (*S ML declarations. *) (* [decomp_lams_eta env c t] finds the number [n] of products in the type [t], and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *) let rec decomp_lams_eta_n n env c t = let rels = fst (decomp_n_prod env none n t) in let rels = List.map (fun (id,_,c) -> (id,c)) rels in let m = nb_lam c in if m >= n then decompose_lam_n n c else let rels',c = decompose_lam c in let d = n - m in (* we'd better keep rels' as long as possible. *) let rels = (list_firstn d rels) @ rels' in let eta_args = List.rev_map mkRel (interval 1 d) in rels, applist (lift d c,eta_args) (*s From a constant to a ML declaration. *) let extract_std_constant env kn body typ = reset_meta_count (); (* The short type [t] (i.e. possibly with abbreviations). *) let t = snd (record_constant_type env kn (Some typ)) in (* The real type [t']: without head lambdas, expanded, *) (* and with [Tvar] translated to [Tvar'] (not instantiable). *) let l,t' = type_decomp (expand env (var2var' t)) in let s = List.map (type2sign env) l in (* The initial ML environment. *) let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in (* Decomposing the top level lambdas of [body]. *) let rels,c = decomp_lams_eta_n (List.length s) env body typ in (* The lambdas names. *) let ids = List.map (fun (n,_) -> id_of_name n) rels in (* The according Coq environment. *) let env = push_rels_assum rels env in (* The real extraction: *) let e = extract_term env mle t' c [] in (* Expunging term and type from dummy lambdas. *) term_expunge s (ids,e), type_expunge env t let extract_fixpoint env vkn (fi,ti,ci) = let n = Array.length vkn in let types = Array.make n (Tdummy Kother) and terms = Array.make n MLdummy in (* for replacing recursive calls [Rel ..] by the corresponding [Const]: *) let sub = List.rev_map mkConst (Array.to_list vkn) in for i = 0 to n-1 do if sort_of env ti.(i) <> InProp then begin let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in terms.(i) <- e; types.(i) <- t; end done; Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types) let extract_constant env kn cb = let r = ConstRef kn in let typ = cb.const_type in match cb.const_body with | None -> (* A logical axiom is risky, an informative one is fatal. *) (match flag_of_type env typ with | (Info,TypeScheme) -> if not (is_custom r) then warning_info_ax r; let n = type_scheme_nb_args env typ in let ids = iterate (fun l -> anonymous::l) n [] in Dtype (r, ids, Taxiom) | (Info,Default) -> if not (is_custom r) then warning_info_ax r; let t = snd (record_constant_type env kn (Some typ)) in Dterm (r, MLaxiom, type_expunge env t) | (Logic,TypeScheme) -> warning_log_ax r; Dtype (r, [], Tdummy Ktype) | (Logic,Default) -> warning_log_ax r; Dterm (r, MLdummy, Tdummy Kother)) | Some body -> (match flag_of_type env typ with | (Logic, Default) -> Dterm (r, MLdummy, Tdummy Kother) | (Logic, TypeScheme) -> Dtype (r, [], Tdummy Ktype) | (Info, Default) -> let e,t = extract_std_constant env kn (force body) typ in Dterm (r,e,t) | (Info, TypeScheme) -> let s,vl = type_sign_vl env typ in let db = db_from_sign s in let t = extract_type_scheme env db (force body) (List.length s) in Dtype (r, vl, t)) let extract_constant_spec env kn cb = let r = ConstRef kn in let typ = cb.const_type in match flag_of_type env typ with | (Logic, TypeScheme) -> Stype (r, [], Some (Tdummy Ktype)) | (Logic, Default) -> Sval (r, Tdummy Kother) | (Info, TypeScheme) -> let s,vl = type_sign_vl env typ in (match cb.const_body with | None -> Stype (r, vl, None) | Some body -> let db = db_from_sign s in let t = extract_type_scheme env db (force body) (List.length s) in Stype (r, vl, Some t)) | (Info, Default) -> let t = snd (record_constant_type env kn (Some typ)) in Sval (r, type_expunge env t) let extract_inductive env kn = let ind = extract_ind env kn in add_recursors env kn; let f l = List.filter (fun t -> not (isDummy (expand env t))) l in let packets = Array.map (fun p -> { p with ip_types = Array.map f p.ip_types }) ind.ind_packets in { ind with ind_packets = packets } (*s From a global reference to a ML declaration. *) let extract_declaration env r = match r with | ConstRef kn -> extract_constant env kn (Environ.lookup_constant kn env) | IndRef (kn,_) -> Dind (kn, extract_inductive env kn) | ConstructRef ((kn,_),_) -> Dind (kn, extract_inductive env kn) | VarRef kn -> assert false (*s Without doing complete extraction, just guess what a constant would be. *) type kind = Logical | Term | Type let constant_kind env cb = match flag_of_type env cb.const_type with | (Logic,_) -> Logical | (Info,TypeScheme) -> Type | (Info,Default) -> Term (*s Is a [ml_decl] logical ? *) let logical_decl = function | Dterm (_,MLdummy,Tdummy _) -> true | Dtype (_,[],Tdummy _) -> true | Dfix (_,av,tv) -> (array_for_all ((=) MLdummy) av) && (array_for_all isDummy tv) | Dind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets | _ -> false (*s Is a [ml_spec] logical ? *) let logical_spec = function | Stype (_, [], Some (Tdummy _)) -> true | Sval (_,Tdummy _) -> true | Sind (_,i) -> array_for_all (fun ip -> ip.ip_logical) i.ind_packets | _ -> false