(* Authors: Nicolas Ayache and Jean-Christophe Filliātre *) (* Tactics to call decision procedures *) (* Works in two steps: - first the Coq context and the current goal are translated in Polymorphic First-Order Logic (see fol.mli in this directory) - then the resulting query is passed to the Why tool that translates it to the syntax of the selected prover (Simplify, CVC Lite, haRVey, Zenon) *) open Util open Pp open Term open Tacmach open Tactics open Tacticals open Fol open Names open Nameops open Termops open Coqlib open Hipattern open Libnames open Declarations open Dp_why let debug = ref false let set_debug b = debug := b let trace = ref false let set_trace b = trace := b let timeout = ref 10 let set_timeout n = timeout := n let logic_dir = ["Coq";"Logic";"Decidable"] let coq_modules = init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules @ [["Coq"; "ZArith"; "BinInt"]] @ [["Coq"; "omega"; "OmegaLemmas"]] let constant = gen_constant_in_modules "dp" coq_modules let coq_Z = lazy (constant "Z") let coq_Zplus = lazy (constant "Zplus") let coq_Zmult = lazy (constant "Zmult") let coq_Zopp = lazy (constant "Zopp") let coq_Zminus = lazy (constant "Zminus") let coq_Zdiv = lazy (constant "Zdiv") let coq_Zs = lazy (constant "Zs") let coq_Zgt = lazy (constant "Zgt") let coq_Zle = lazy (constant "Zle") let coq_Zge = lazy (constant "Zge") let coq_Zlt = lazy (constant "Zlt") let coq_Z0 = lazy (constant "Z0") let coq_Zpos = lazy (constant "Zpos") let coq_Zneg = lazy (constant "Zneg") let coq_xH = lazy (constant "xH") let coq_xI = lazy (constant "xI") let coq_xO = lazy (constant "xO") let coq_iff = lazy (constant "iff") (* not Prop typed expressions *) exception NotProp (* not first-order expressions *) exception NotFO (* Renaming of Coq globals *) let global_names = Hashtbl.create 97 let used_names = Hashtbl.create 97 let rename_global r = try Hashtbl.find global_names r with Not_found -> let rec loop id = if Hashtbl.mem used_names id then loop (lift_ident id) else begin Hashtbl.add used_names id (); let s = string_of_id id in Hashtbl.add global_names r s; s end in loop (Nametab.id_of_global r) let foralls = List.fold_right (fun (x,t) p -> Forall (x, t, p)) let fresh_var = function | Anonymous -> rename_global (VarRef (id_of_string "x")) | Name x -> rename_global (VarRef x) (* coq_rename_vars env [(x1,t1);...;(xn,tn)] renames the xi outside of env names, and returns the new variables together with the new environment *) let coq_rename_vars env vars = let avoid = ref (ids_of_named_context (Environ.named_context env)) in List.fold_right (fun (na,t) (newvars, newenv) -> let id = next_name_away na !avoid in avoid := id :: !avoid; id :: newvars, Environ.push_named (id, None, t) newenv) vars ([],env) (* extract the prenex type quantifications i.e. type_quantifiers env (A1:Set)...(Ak:Set)t = A1...An, (env+Ai), t *) let decomp_type_quantifiers env t = let rec loop vars t = match kind_of_term t with | Prod (n, a, t) when is_Set a -> loop ((n,a) :: vars) t | _ -> let vars, env = coq_rename_vars env vars in let t = substl (List.map mkVar vars) t in List.rev vars, env, t in loop [] t (* same thing with lambda binders (for axiomatize body) *) let decomp_type_lambdas env t = let rec loop vars t = match kind_of_term t with | Lambda (n, a, t) when is_Set a -> loop ((n,a) :: vars) t | _ -> let vars, env = coq_rename_vars env vars in let t = substl (List.map mkVar vars) t in List.rev vars, env, t in loop [] t let decompose_arrows = let rec arrows_rec l c = match kind_of_term c with | Prod (_,t,c) when not (dependent (mkRel 1) c) -> arrows_rec (t :: l) c | Cast (c,_,_) -> arrows_rec l c | _ -> List.rev l, c in arrows_rec [] let rec eta_expanse t vars env i = assert (i >= 0); if i = 0 then t, vars, env else match kind_of_term (Typing.type_of env Evd.empty t) with | Prod (n, a, b) when not (dependent (mkRel 1) b) -> let avoid = ids_of_named_context (Environ.named_context env) in let id = next_name_away n avoid in let env' = Environ.push_named (id, None, a) env in let t' = mkApp (t, [| mkVar id |]) in eta_expanse t' (id :: vars) env' (pred i) | _ -> assert false let rec skip_k_args k cl = match k, cl with | 0, _ -> cl | _, _ :: cl -> skip_k_args (k-1) cl | _, [] -> raise NotFO (* Coq global references *) type global = Gnot_fo | Gfo of Fol.decl let globals = ref Refmap.empty let globals_stack = ref [] (* synchronization *) let () = Summary.declare_summary "Dp globals" { Summary.freeze_function = (fun () -> !globals, !globals_stack); Summary.unfreeze_function = (fun (g,s) -> globals := g; globals_stack := s); Summary.init_function = (fun () -> ()); Summary.survive_module = false; Summary.survive_section = false } let add_global r d = globals := Refmap.add r d !globals let mem_global r = Refmap.mem r !globals let lookup_global r = match Refmap.find r !globals with | Gnot_fo -> raise NotFO | Gfo d -> d let locals = Hashtbl.create 97 let lookup_local r = match Hashtbl.find locals r with | Gnot_fo -> raise NotFO | Gfo d -> d let iter_all_constructors i f = let _, oib = Global.lookup_inductive i in Array.iteri (fun j tj -> f j (mkConstruct (i, j+1))) oib.mind_nf_lc (* injection c [t1,...,tn] adds the injection axiom forall x1:t1,...,xn:tn,y1:t1,...,yn:tn. c(x1,...,xn)=c(y1,...,yn) -> x1=y1 /\ ... /\ xn=yn *) let injection c l = let i = ref 0 in let var s = incr i; id_of_string (s ^ string_of_int !i) in let xl = List.map (fun t -> rename_global (VarRef (var "x")), t) l in i := 0; let yl = List.map (fun t -> rename_global (VarRef (var "y")), t) l in let f = List.fold_right2 (fun (x,_) (y,_) p -> And (Fatom (Eq (App (x,[]),App (y,[]))), p)) xl yl True in let vars = List.map (fun (x,_) -> App(x,[])) in let f = Imp (Fatom (Eq (App (c, vars xl), App (c, vars yl))), f) in let foralls = List.fold_right (fun (x,t) p -> Forall (x, t, p)) in let f = foralls xl (foralls yl f) in let ax = Axiom ("injection_" ^ c, f) in globals_stack := ax :: !globals_stack (* rec_names_for c [|n1;...;nk|] builds the list of constant names for identifiers n1...nk with the same path as c, if they exist; otherwise raises Not_found *) let rec_names_for c = let mp,dp,_ = Names.repr_con c in array_map_to_list (function | Name id -> let c' = Names.make_con mp dp (label_of_id id) in ignore (Global.lookup_constant c'); msgnl (Printer.pr_constr (mkConst c')); c' | Anonymous -> raise Not_found) (* abstraction tables *) let term_abstractions = Hashtbl.create 97 let new_abstraction = let r = ref 0 in fun () -> incr r; "abstraction_" ^ string_of_int !r (* Arithmetic constants *) exception NotArithConstant (* translates a closed Coq term p:positive into a FOL term of type int *) let rec tr_positive p = match kind_of_term p with | Term.Construct _ when p = Lazy.force coq_xH -> Cst 1 | Term.App (f, [|a|]) when f = Lazy.force coq_xI -> Plus (Mult (Cst 2, tr_positive a), Cst 1) | Term.App (f, [|a|]) when f = Lazy.force coq_xO -> Mult (Cst 2, tr_positive a) | Term.Cast (p, _, _) -> tr_positive p | _ -> raise NotArithConstant (* translates a closed Coq term t:Z into a FOL term of type int *) let rec tr_arith_constant t = match kind_of_term t with | Term.Construct _ when t = Lazy.force coq_Z0 -> Cst 0 | Term.App (f, [|a|]) when f = Lazy.force coq_Zpos -> tr_positive a | Term.App (f, [|a|]) when f = Lazy.force coq_Zneg -> Moins (Cst 0, tr_positive a) | Term.Cast (t, _, _) -> tr_arith_constant t | _ -> raise NotArithConstant (* translate a Coq term t:Set into a FOL type expression; tv = list of type variables *) and tr_type tv env t = let t = Reductionops.nf_betadeltaiota env Evd.empty t in if t = Lazy.force coq_Z then Tid ("int", []) else match kind_of_term t with | Var x when List.mem x tv -> Tvar (string_of_id x) | _ -> let f, cl = decompose_app t in begin try let r = global_of_constr f in match tr_global env r with | DeclType (id, k) -> assert (k = List.length cl); (* since t:Set *) Tid (id, List.map (tr_type tv env) cl) | _ -> raise NotFO with | Not_found -> raise NotFO | NotFO -> (* we need to abstract some part of (f cl) *) (*TODO*) raise NotFO end and make_term_abstraction tv env c = let ty = Typing.type_of env Evd.empty c in let id = new_abstraction () in match tr_decl env id ty with | DeclFun (id,_,_,_) as d -> begin try Hashtbl.find term_abstractions c with Not_found -> Hashtbl.add term_abstractions c id; globals_stack := d :: !globals_stack; id end | _ -> raise NotFO (* translate a Coq declaration id:ty in a FOL declaration, that is either - a type declaration : DeclType (id, n) where n:int is the type arity - a function declaration : DeclFun (id, tl, t) ; that includes constants - a predicate declaration : DeclPred (id, tl) - an axiom : Axiom (id, p) *) and tr_decl env id ty = let tv, env, t = decomp_type_quantifiers env ty in if is_Set t then DeclType (id, List.length tv) else if is_Prop t then DeclPred (id, List.length tv, []) else let s = Typing.type_of env Evd.empty t in if is_Prop s then Axiom (id, tr_formula tv [] env t) else let l, t = decompose_arrows t in let l = List.map (tr_type tv env) l in if is_Prop t then DeclPred(id, List.length tv, l) else let s = Typing.type_of env Evd.empty t in if is_Set s then DeclFun(id, List.length tv, l, tr_type tv env t) else raise NotFO (* tr_global(r) = tr_decl(id(r),typeof(r)) + a cache mechanism *) and tr_global env r = match r with | VarRef id -> lookup_local id | r -> try lookup_global r with Not_found -> try let ty = Global.type_of_global r in let id = rename_global r in let d = tr_decl env id ty in (* r can be already declared if it is a constructor *) if not (mem_global r) then begin add_global r (Gfo d); globals_stack := d :: !globals_stack end; begin try axiomatize_body env r id d with NotFO -> () end; d with NotFO -> add_global r Gnot_fo; raise NotFO and axiomatize_body env r id d = match r with | VarRef _ -> assert false | ConstRef c -> begin match (Global.lookup_constant c).const_body with | Some b -> let b = force b in let tv, env, b = decomp_type_lambdas env b in let axioms = (match d with | DeclPred (id, _, []) -> let value = tr_formula tv [] env b in [id, Iff (Fatom (Pred (id, [])), value)] | DeclFun (id, _, [], _) -> let value = tr_term tv [] env b in [id, Fatom (Eq (Fol.App (id, []), value))] | DeclFun (id, _, l, _) | DeclPred (id, _, l) -> (*Format.eprintf "axiomatize_body %S@." id;*) let b = match kind_of_term b with (* a single recursive function *) | Fix (_, (_,_,[|b|])) -> subst1 (mkConst c) b (* mutually recursive functions *) | Fix ((_,i), (names,_,bodies)) -> (* we only deal with named functions *) begin try let l = rec_names_for c names in substl (List.rev_map mkConst l) bodies.(i) with Not_found -> b end | _ -> b in let vars, t = decompose_lam b in let n = List.length l in let k = List.length vars in assert (k <= n); let vars, env = coq_rename_vars env vars in let t = substl (List.map mkVar vars) t in let t, vars, env = eta_expanse t vars env (n-k) in let vars = List.rev vars in let bv = vars in let vars = List.map (fun x -> string_of_id x) vars in let fol_var x = Fol.App (x, []) in let fol_vars = List.map fol_var vars in let vars = List.combine vars l in begin match d with | DeclFun (_, _, _, ty) -> begin match kind_of_term t with | Case (ci, _, e, br) -> equations_for_case env id vars tv bv ci e br | _ -> let t = tr_term tv bv env t in let ax = add_proof (Fun_def (id, vars, ty, t)) in let p = Fatom (Eq (App (id, fol_vars), t)) in [ax, foralls vars p] end | DeclPred _ -> let value = tr_formula tv bv env t in let p = Iff (Fatom (Pred (id, fol_vars)), value) in [id, foralls vars p] | _ -> assert false end | DeclType _ -> raise NotFO | Axiom _ -> assert false) in let axioms = List.map (fun (id,ax) -> Axiom (id, ax)) axioms in globals_stack := axioms @ !globals_stack | None -> () (* Coq axiom *) end | IndRef i -> iter_all_constructors i (fun _ c -> let rc = global_of_constr c in try begin match tr_global env rc with | DeclFun (_, _, [], _) -> () | DeclFun (idc, _, al, _) -> injection idc al | _ -> () end with NotFO -> ()) | _ -> () and equations_for_case env id vars tv bv ci e br = match kind_of_term e with | Var x when List.exists (fun (y, _) -> string_of_id x = y) vars -> let eqs = ref [] in iter_all_constructors ci.ci_ind (fun j cj -> try let cjr = global_of_constr cj in begin match tr_global env cjr with | DeclFun (idc, _, l, _) -> let b = br.(j) in let rec_vars, b = decompose_lam b in let rec_vars, env = coq_rename_vars env rec_vars in let coq_rec_vars = List.map mkVar rec_vars in let b = substl coq_rec_vars b in let rec_vars = List.rev rec_vars in let coq_rec_term = applist (cj, List.rev coq_rec_vars) in let b = replace_vars [x, coq_rec_term] b in let bv = bv @ rec_vars in let rec_vars = List.map string_of_id rec_vars in let fol_var x = Fol.App (x, []) in let fol_rec_vars = List.map fol_var rec_vars in let fol_rec_term = App (idc, fol_rec_vars) in let rec_vars = List.combine rec_vars l in let fol_vars = List.map fst vars in let fol_vars = List.map fol_var fol_vars in let fol_vars = List.map (fun y -> match y with | App (id, _) -> if id = string_of_id x then fol_rec_term else y | _ -> y) fol_vars in let vars = vars @ rec_vars in let rec remove l e = match l with | [] -> [] | (y, t)::l' -> if y = string_of_id e then l' else (y, t)::(remove l' e) in let vars = remove vars x in let p = Fatom (Eq (App (id, fol_vars), tr_term tv bv env b)) in eqs := (id ^ "_" ^ idc, foralls vars p) :: !eqs | _ -> assert false end with NotFO -> ()); !eqs | _ -> raise NotFO (* assumption: t:T:Set *) and tr_term tv bv env t = match kind_of_term t with | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zplus -> Plus (tr_term tv bv env a, tr_term tv bv env b) | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zminus -> Moins (tr_term tv bv env a, tr_term tv bv env b) | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zmult -> Mult (tr_term tv bv env a, tr_term tv bv env b) | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zdiv -> Div (tr_term tv bv env a, tr_term tv bv env b) | Term.Var id when List.mem id bv -> App (string_of_id id, []) | _ -> try tr_arith_constant t with NotArithConstant -> let f, cl = decompose_app t in begin try let r = global_of_constr f in match tr_global env r with | DeclFun (s, k, _, _) -> let cl = skip_k_args k cl in Fol.App (s, List.map (tr_term tv bv env) cl) | _ -> raise NotFO with | Not_found -> raise NotFO | NotFO -> (* we need to abstract some part of (f cl) *) let rec abstract app = function | [] -> Fol.App (make_term_abstraction tv env app, []) | x :: l as args -> begin try let s = make_term_abstraction tv env app in Fol.App (s, List.map (tr_term tv bv env) args) with NotFO -> abstract (applist (app, [x])) l end in let app,l = match cl with | x :: l -> applist (f, [x]), l | [] -> raise NotFO in abstract app l end and quantifiers n a b tv bv env = let vars, env = coq_rename_vars env [n,a] in let id = match vars with [x] -> x | _ -> assert false in let b = subst1 (mkVar id) b in let t = tr_type tv env a in let bv = id :: bv in id, t, bv, env, b (* assumption: f is of type Prop *) and tr_formula tv bv env f = let c, args = decompose_app f in match kind_of_term c, args with | Var id, [] -> Fatom (Pred (rename_global (VarRef id), [])) | _, [t;a;b] when c = build_coq_eq () -> let ty = Typing.type_of env Evd.empty t in if is_Set ty then let _ = tr_type tv env t in Fatom (Eq (tr_term tv bv env a, tr_term tv bv env b)) else raise NotFO | _, [a;b] when c = Lazy.force coq_Zle -> Fatom (Le (tr_term tv bv env a, tr_term tv bv env b)) | _, [a;b] when c = Lazy.force coq_Zlt -> Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b)) | _, [a;b] when c = Lazy.force coq_Zge -> Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b)) | _, [a;b] when c = Lazy.force coq_Zgt -> Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b)) | _, [] when c = build_coq_False () -> False | _, [] when c = build_coq_True () -> True | _, [a] when c = build_coq_not () -> Not (tr_formula tv bv env a) | _, [a;b] when c = build_coq_and () -> And (tr_formula tv bv env a, tr_formula tv bv env b) | _, [a;b] when c = build_coq_or () -> Or (tr_formula tv bv env a, tr_formula tv bv env b) | _, [a;b] when c = Lazy.force coq_iff -> Iff (tr_formula tv bv env a, tr_formula tv bv env b) | Prod (n, a, b), _ -> if is_imp_term f then Imp (tr_formula tv bv env a, tr_formula tv bv env b) else let id, t, bv, env, b = quantifiers n a b tv bv env in Forall (string_of_id id, t, tr_formula tv bv env b) | _, [_; a] when c = build_coq_ex () -> begin match kind_of_term a with | Lambda(n, a, b) -> let id, t, bv, env, b = quantifiers n a b tv bv env in Exists (string_of_id id, t, tr_formula tv bv env b) | _ -> (* unusual case of the shape (ex p) *) raise NotFO (* TODO: we could eta-expanse *) end | _ -> begin try let r = global_of_constr c in match tr_global env r with | DeclPred (s, k, _) -> let args = skip_k_args k args in Fatom (Pred (s, List.map (tr_term tv bv env) args)) | _ -> raise NotFO with Not_found -> raise NotFO end let tr_goal gl = Hashtbl.clear locals; let tr_one_hyp (id, ty) = try let s = rename_global (VarRef id) in let d = tr_decl (pf_env gl) s ty in Hashtbl.add locals id (Gfo d); d with NotFO -> Hashtbl.add locals id Gnot_fo; raise NotFO in let hyps = List.fold_right (fun h acc -> try tr_one_hyp h :: acc with NotFO -> acc) (pf_hyps_types gl) [] in let c = tr_formula [] [] (pf_env gl) (pf_concl gl) in let hyps = List.rev_append !globals_stack (List.rev hyps) in hyps, c type prover = Simplify | Ergo | Yices | CVCLite | Harvey | Zenon | Gwhy let remove_files = List.iter (fun f -> try Sys.remove f with _ -> ()) let sprintf = Format.sprintf let call_simplify fwhy = let cmd = sprintf "why --no-arrays --simplify --encoding sstrat %s" fwhy in if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed"); let fsx = Filename.chop_suffix fwhy ".why" ^ "_why.sx" in let cmd = sprintf "timeout %d Simplify %s > out 2>&1 && grep -q -w Valid out" !timeout fsx in let out = Sys.command cmd in let r = if out = 0 then Valid None else if out = 1 then Invalid else Timeout in if not !debug then remove_files [fwhy; fsx]; r let call_ergo fwhy = let ftrace = Filename.temp_file "ergo_trace" "" in let cmd = if !trace then sprintf "timeout %d ergo -cctrace %s %s > out 2>&1 && grep -q -w Valid out" !timeout ftrace fwhy else sprintf "timeout %d ergo %s > out 2>&1 && grep -q -w Valid out" !timeout fwhy in let out = Sys.command cmd in let r = if out = 0 then Valid (if !trace then Some ftrace else None) else if out = 1 then Invalid else Timeout in if not !debug then remove_files [fwhy]; r let call_zenon fwhy = let cmd = sprintf "why --no-prelude --no-zenon-prelude --zenon %s" fwhy in if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed"); let fznn = Filename.chop_suffix fwhy ".why" ^ "_why.znn" in let out = Filename.temp_file "dp_out" "" in let cmd = sprintf "timeout %d zenon -ocoqterm %s > %s 2>&1" !timeout fznn out in let c = Sys.command cmd in if not !debug then remove_files [fwhy; fznn]; if c = 137 then Timeout else begin if c <> 0 then anomaly ("command failed: " ^ cmd); if Sys.command (sprintf "grep -q -w Error %s" out) = 0 then error "Zenon failed"; let c = Sys.command (sprintf "grep -q PROOF-FOUND %s" out) in if c = 0 then Valid (Some out) else Invalid end let call_yices fwhy = let cmd = sprintf "why --no-arrays -smtlib --encoding sstrat %s" fwhy in if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed"); let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in let cmd = sprintf "timeout %d yices -pc 0 -smt < %s > out 2>&1 && grep -q -w unsat out" !timeout fsmt in let out = Sys.command cmd in let r = if out = 0 then Valid None else if out = 1 then Invalid else Timeout in if not !debug then remove_files [fwhy; fsmt]; r let call_cvcl fwhy = let cmd = sprintf "why --no-arrays --cvcl --encoding sstrat %s" fwhy in if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed"); let fcvc = Filename.chop_suffix fwhy ".why" ^ "_why.cvc" in let cmd = sprintf "timeout %d cvcl < %s > out 2>&1 && grep -q -w Valid out" !timeout fcvc in let out = Sys.command cmd in let r = if out = 0 then Valid None else if out = 1 then Invalid else Timeout in if not !debug then remove_files [fwhy; fcvc]; r let call_harvey fwhy = let cmd = sprintf "why --no-arrays --harvey --encoding strat %s" fwhy in if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed"); let frv = Filename.chop_suffix fwhy ".why" ^ "_why.rv" in let out = Sys.command (sprintf "rvc -e -t %s > /dev/null 2>&1" frv) in if out <> 0 then anomaly ("call to rvc -e -t " ^ frv ^ " failed"); let f = Filename.chop_suffix frv ".rv" ^ "-0.baf" in let outf = Filename.temp_file "rv" ".out" in let out = Sys.command (sprintf "timeout %d rv -e\"-T 2000\" %s > %s 2>&1" !timeout f outf) in let r = if out <> 0 then Timeout else let cmd = sprintf "grep \"Proof obligation in\" %s | grep -q \"is valid\"" outf in if Sys.command cmd = 0 then Valid None else Invalid in if not !debug then remove_files [fwhy; frv; outf]; r let call_gwhy fwhy = let cmd = sprintf "gwhy --no-arrays %s" fwhy in if Sys.command cmd <> 0 then ignore (Sys.command (sprintf "emacs %s" fwhy)); NoAnswer let ergo_proof_from_file f gl = let s = let buf = Buffer.create 1024 in let c = open_in f in try while true do Buffer.add_string buf (input_line c) done; assert false with End_of_file -> close_in c; Buffer.contents buf in let parsed_constr = Pcoq.parse_string Pcoq.Constr.constr s in let t = Constrintern.interp_constr (project gl) (pf_env gl) parsed_constr in exact_check t gl let call_prover prover q = let fwhy = Filename.temp_file "coq_dp" ".why" in Dp_why.output_file fwhy q; if !debug then Format.eprintf "Why file: %s@." fwhy; match prover with | Simplify -> call_simplify fwhy | Ergo -> call_ergo fwhy | Yices -> call_yices fwhy | Zenon -> call_zenon fwhy | CVCLite -> call_cvcl fwhy | Harvey -> call_harvey fwhy | Gwhy -> call_gwhy fwhy let dp prover gl = let concl_type = pf_type_of gl (pf_concl gl) in if not (is_Prop concl_type) then error "Conclusion is not a Prop"; try let q = tr_goal gl in begin match call_prover prover q with | Valid (Some f) when prover = Zenon -> Dp_zenon.proof_from_file f gl | Valid (Some f) when prover = Ergo -> ergo_proof_from_file f gl | Valid _ -> Tactics.admit_as_an_axiom gl | Invalid -> error "Invalid" | DontKnow -> error "Don't know" | Timeout -> error "Timeout" | NoAnswer -> Tacticals.tclIDTAC gl end with NotFO -> error "Not a first order goal" let simplify = tclTHEN intros (dp Simplify) let ergo = tclTHEN intros (dp Ergo) let yices = tclTHEN intros (dp Yices) let cvc_lite = tclTHEN intros (dp CVCLite) let harvey = dp Harvey let zenon = tclTHEN intros (dp Zenon) let gwhy = tclTHEN intros (dp Gwhy) let dp_hint l = let env = Global.env () in let one_hint (qid,r) = if not (mem_global r) then begin let ty = Global.type_of_global r in let s = Typing.type_of env Evd.empty ty in if is_Prop s then try let id = rename_global r in let tv, env, ty = decomp_type_quantifiers env ty in let d = Axiom (id, tr_formula tv [] env ty) in add_global r (Gfo d); globals_stack := d :: !globals_stack with NotFO -> add_global r Gnot_fo; msg_warning (pr_reference qid ++ str " ignored (not a first order proposition)") else begin add_global r Gnot_fo; msg_warning (pr_reference qid ++ str " ignored (not a proposition)") end end in List.iter one_hint (List.map (fun qid -> qid, Nametab.global qid) l)