(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* "prod" | n -> check_product_n n; Printf.sprintf "tuple_%d" n let dep_product_name = function | 1 -> "sig" | n -> check_dep_product_n n; Printf.sprintf "sig_%d" n let product ren env before lo = function | None -> (* non dependent case *) begin match lo with | [_,v] -> v | _ -> let s = product_name (List.length lo) in Term.applist (constant s, List.map snd lo) end | Some q -> (* dependent case *) let s = dep_product_name (List.length lo) in let a' = apply_post ren env before q in Term.applist (constant s, (List.map snd lo) @ [a'.a_value]) (* [arrow ren v pl] abstracts the term v over the pre-condition if any * i.e. computes * * (P1 x1 ... xn) -> ... -> (Pk x1 ... xn) -> v * * where the xi are given by the renaming [ren]. *) let arrow ren env v pl = List.fold_left (fun t p -> if p.p_assert then t else Term.mkArrow (apply_pre ren env p).p_value t) v pl (* [abstract_post ren env (e,q) (res,v)] abstract a post-condition q * over the write-variables of e *) let rec abstract_post ren env (e,q) = let after_id id = id_of_string ((string_of_id id) ^ "'") in let (_,go) = Peffect.get_repr e in let al = List.map (fun id -> (id,after_id id)) go in let q = Option.map (named_app (subst_in_constr al)) q in let tgo = List.map (fun (id,aid) -> (aid, trad_type_in_env ren env id)) al in Option.map (named_app (abstract tgo)) q (* Translation of effects types in cic types. * * [trad_ml_type_v] and [trad_ml_type_c] translate types with effects * into cic types. *) and prod ren env g = List.map (fun id -> (current_var ren id, trad_type_in_env ren env id)) g and input ren env e = let i,_ = Peffect.get_repr e in prod ren env i and output ren env ((id,v),e) = let tv = trad_ml_type_v ren env v in let _,o = Peffect.get_repr e in (prod ren env o) @ [id,tv] and input_output ren env c = let ((res,v),e,_,_) = c in input ren env e, output ren env ((res,v),e) (* The function t -> \barre{t} on V and C. *) and trad_ml_type_c ren env c = let ((res,v),e,p,q) = c in let q = abstract_post ren env (e,q) in let lo = output ren env ((res,v),e) in let ty = product ren env (current_date ren) lo q in let ty = arrow ren env ty p in let li = input ren env e in n_mkNamedProd ty li and trad_ml_type_v ren env = function | Ref _ | Array _ -> invalid_arg "Monad.trad_ml_type_v" | Arrow (bl, c) -> let bl',ren',env' = List.fold_left (fun (bl,ren,env) b -> match b with | (id,BindType ((Ref _ | Array _) as v)) -> let env' = add (id,v) env in let ren' = initial_renaming env' in (bl,ren',env') | (id,BindType v) -> let tt = trad_ml_type_v ren env v in let env' = add (id,v) env in let ren' = initial_renaming env' in (id,tt)::bl,ren',env' | (id, BindSet) -> (id,mkSet) :: bl,ren,env | _ -> failwith "Monad: trad_ml_type_v: not yet implemented" ) ([],ren,env) bl in n_mkNamedProd (trad_ml_type_c ren' env' c) bl' | TypePure c -> (apply_pre ren env (anonymous_pre false c)).p_value and trad_imp_type ren env = function | Ref v -> trad_ml_type_v ren env v | Array (c,v) -> Term.applist (constant "array", [c; trad_ml_type_v ren env v]) | _ -> invalid_arg "Monad.trad_imp_type" and trad_type_in_env ren env id = let v = type_in_env env id in trad_imp_type ren env v (* bindings *) let binding_of_alist ren env al = List.map (fun (id,id') -> (id', CC_typed_binder (trad_type_in_env ren env id))) al (* [make_abs bl t p] abstracts t w.r.t binding list bl., that is * [x1:t1]...[xn:tn]t. Returns t if the binding is empty. *) let make_abs bl t = match bl with | [] -> t | _ -> CC_lam (bl, t) (* [result_tuple ren before env (res,v) (ef,q)] constructs the tuple * * (y1,...,yn,res,?::(q/ren y1 ... yn res)) * * where the yi are the values of the output of ef. * if there is no yi and no post-condition, it is simplified in res itself. *) let simple_constr_of_prog = function | CC_expr c -> c | CC_var id -> mkVar id | _ -> assert false let make_tuple l q ren env before = match l with | [e,_] when q = None -> e | _ -> let tl = List.map snd l in let dep,h,th = match q with | None -> false,[],[] | Some c -> let args = List.map (fun (e,_) -> simple_constr_of_prog e) l in let c = apply_post ren env before c in true, [ CC_hole (Term.applist (c.a_value, args)) ], (* hole *) [ c.a_value ] (* type of the hole *) in CC_tuple (dep, tl @ th, (List.map fst l) @ h) let result_tuple ren before env (res,v) (ef,q) = let ids = get_writes ef in let lo = (List.map (fun id -> let id' = current_var ren id in CC_var id', trad_type_in_env ren env id) ids) @ [res,v] in let q = abstract_post ren env (ef,q) in make_tuple lo q ren env before, product ren env before lo q (* [make_let_in ren env fe p (vo,q) (res,v) t] constructs the term [ let h1 = ?:P1 in ... let hn = ?:Pm in ] let y1,y2,...,yn, res [,q] = fe in t vo=[_,y1;...;_,ym] are list of renamings. v is the type of res *) let let_in_pre ty p t = let h = p.p_value in CC_letin (false, ty, [pre_name p.p_name,CC_typed_binder h], CC_hole h, t) let multiple_let_in_pre ty hl t = List.fold_left (fun t h -> let_in_pre ty h t) t hl let make_let_in ren env fe p (vo,q) (res,tyres) (t,ty) = let b = [res, CC_typed_binder tyres] in let b',dep = match q with | None -> [],false | Some q -> [post_name q.a_name, CC_untyped_binder],true in let bl = (binding_of_alist ren env vo) @ b @ b' in let tyapp = let n = succ (List.length vo) in let name = match q with None -> product_name n | _ -> dep_product_name n in constant name in let t = CC_letin (dep, ty, bl, fe, t) in multiple_let_in_pre ty (List.map (apply_pre ren env) p) t (* [abs_pre ren env (t,ty) pl] abstracts a term t with respect to the * list of pre-conditions [pl]. Some of them are real pre-conditions * and others are assertions, according to the boolean field p_assert, * so we construct the term * [h1:P1]...[hn:Pn]let h'1 = ?:P'1 in ... let H'm = ?:P'm in t *) let abs_pre ren env (t,ty) pl = List.fold_left (fun t p -> if p.p_assert then let_in_pre ty (apply_pre ren env p) t else let h = pre_name p.p_name in CC_lam ([h,CC_typed_binder (apply_pre ren env p).p_value],t)) t pl (* [make_block ren env finish bl] builds the translation of a block * finish is the function that is applied to the result at the end of the * block. *) let make_block ren env finish bl = let rec rec_block ren result = function | [] -> finish ren result | (Assert c) :: block -> let t,ty = rec_block ren result block in let c = apply_assert ren env c in let p = { p_assert = true; p_name = c.a_name; p_value = c.a_value } in let_in_pre ty p t, ty | (Label s) :: block -> let ren' = push_date ren s in rec_block ren' result block | (Statement (te,info)) :: block -> let (_,tye),efe,pe,qe = info in let w = get_writes efe in let ren' = next ren w in let id = result_id in let tye = trad_ml_type_v ren env tye in let t = rec_block ren' (Some (id,tye)) block in make_let_in ren env te pe (current_vars ren' w,qe) (id,tye) t, snd t in let t,_ = rec_block ren None bl in t (* [make_app env ren args ren' (tf,cf) (cb,s,capp) c] * constructs the application of [tf] to [args]. * capp is the effect of application, after substitution (s) and cb before *) let eq ty e1 e2 = Term.applist (constant "eq", [ty; e1; e2]) let lt r e1 e2 = Term.applist (r, [e1; e2]) let is_recursive env = function | CC_var x -> (try let _ = find_recursion x env in true with Not_found -> false) | _ -> false let if_recursion env f = function | CC_var x -> (try let v = find_recursion x env in (f v x) with Not_found -> []) | _ -> [] let dec_phi ren env s svi = if_recursion env (fun (phi0,(cphi,r,_)) f -> let phi = subst_in_constr svi (subst_in_constr s cphi) in let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in [CC_expr phi; CC_hole (lt r phi (mkVar phi0))]) let eq_phi ren env s svi = if_recursion env (fun (phi0,(cphi,_,a)) f -> let phi = subst_in_constr svi (subst_in_constr s cphi) in let phi = (apply_pre ren env (anonymous_pre true phi)).p_value in [CC_hole (eq a phi phi)]) let is_ref_binder = function | (_,BindType (Ref _ | Array _)) -> true | _ -> false let make_app env ren args ren' (tf,cf) ((bl,cb),s,capp) c = let ((_,tvf),ef,pf,qf) = cf in let (_,eapp,papp,qapp) = capp in let ((_,v),e,p,q) = c in let bl = List.filter (fun b -> not (is_ref_binder b)) bl in let recur = is_recursive env tf in let before = current_date ren in let ren'' = next ren' (get_writes ef) in let ren''' = next ren'' (get_writes eapp) in let res = result_id in let vi,svi = let ids = List.map fst bl in let s = fresh (avoid ren ids) ids in List.map snd s, s in let tyres = subst_in_constr svi (trad_ml_type_v ren env v) in let t,ty = result_tuple ren''' before env (CC_var res, tyres) (e,q) in let res_f = id_of_string "vf" in let inf,outf = let i,o = let _,e,_,_ = cb in get_reads e, get_writes e in let apply_s = List.map (fun id -> try List.assoc id s with _ -> id) in apply_s i, apply_s o in let fe = let xi = List.rev (List.map snd (current_vars ren'' inf)) in let holes = List.map (fun x -> (apply_pre ren'' env x).p_value) (List.map (pre_app (subst_in_constr svi)) papp) in CC_app ((if recur then tf else CC_var res_f), (dec_phi ren'' env s svi tf) @(List.map (fun id -> CC_var id) (vi @ xi)) @(eq_phi ren'' env s svi tf) @(List.map (fun c -> CC_hole c) holes)) in let qapp' = Option.map (named_app (subst_in_constr svi)) qapp in let t = make_let_in ren'' env fe [] (current_vars ren''' outf,qapp') (res,tyres) (t,ty) in let t = if recur then t else make_let_in ren' env tf pf (current_vars ren'' (get_writes ef),qf) (res_f,trad_ml_type_v ren env tvf) (t,ty) in let rec eval_args ren = function | [] -> t | (vx,(ta,((_,tva),ea,pa,qa)))::args -> let w = get_writes ea in let ren' = next ren w in let t' = eval_args ren' args in make_let_in ren env ta pa (current_vars ren' (get_writes ea),qa) (vx,trad_ml_type_v ren env tva) (t',ty) in eval_args ren (List.combine vi args) (* [make_if ren env (tb,cb) ren' (t1,c1) (t2,c2)] * constructs the term corresponding to a if expression, i.e * * [p] let o1, b [,q1] = m1 [?::p1] in * Cases b of * R => let o2, v2 [,q2] = t1 [?::p2] in * (proj (o1,o2)), v2 [,?::q] * | S => let o2, v2 [,q2] = t2 [?::p2] in * (proj (o1,o2)), v2 [,?::q] *) let make_if_case ren env ty (b,qb) (br1,br2) = let id_b,ty',ty1,ty2 = match qb with | Some q -> let q = apply_post ren env (current_date ren) q in let (name,t1,t2) = Term.destLambda q.a_value in q.a_name, Term.mkLambda (name, t1, mkArrow t2 ty), Term.mkApp (q.a_value, [| coq_true |]), Term.mkApp (q.a_value, [| coq_false |]) | None -> assert false in let n = test_name Anonymous in CC_app (CC_case (ty', b, [CC_lam ([n,CC_typed_binder ty1], br1); CC_lam ([n,CC_typed_binder ty2], br2)]), [CC_var (post_name id_b)]) let make_if ren env (tb,cb) ren' (t1,c1) (t2,c2) c = let ((_,tvb),eb,pb,qb) = cb in let ((_,tv1),e1,p1,q1) = c1 in let ((_,tv2),e2,p2,q2) = c2 in let ((_,t),e,p,q) = c in let wb = get_writes eb in let resb = id_of_string "resultb" in let res = result_id in let tyb = trad_ml_type_v ren' env tvb in let tt = trad_ml_type_v ren env t in (* une branche de if *) let branch (tv_br,e_br,p_br,q_br) f_br = let w_br = get_writes e_br in let ren'' = next ren' w_br in let t,ty = result_tuple ren'' (current_date ren') env (CC_var res,tt) (e,q) in make_let_in ren' env f_br p_br (current_vars ren'' w_br,q_br) (res,tt) (t,ty), ty in let t1,ty1 = branch c1 t1 in let t2,ty2 = branch c2 t2 in let ty = ty1 in let qb = force_bool_name qb in let t = make_if_case ren env ty (CC_var resb,qb) (t1,t2) in make_let_in ren env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty) (* [make_while ren env (cphi,r,a) (tb,cb) (te,ce) c] * constructs the term corresponding to the while, i.e. * * [h:(I x)](well_founded_induction * A R ?::(well_founded A R) * [Phi:A] (x) Phi=phi(x)->(I x)-> \exists x'.res.(I x')/\(S x') * [Phi_0:A][w:(Phi:A)(Phi ...] * [x][eq:Phi_0=phi(x)][h:(I x)] * Cases (b x) of * (left HH) => (x,?::(IS x)) * | (right HH) => let x1,_,_ = (e x ?) in * (w phi(x1) ? x1 ? ?) * phi(x) x ? ?) *) let id_phi = id_of_string "phi" let id_phi0 = id_of_string "phi0" let make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c) = let ((_,tvb),eb,pb,qb) = cb in let (_,ef,_,is) = c in let ren' = next ren (get_writes ef) in let before = current_date ren in let ty = let is = abstract_post ren' env (ef,is) in let _,lo = input_output ren env c in product ren env before lo is in let resb = id_of_string "resultb" in let tyb = trad_ml_type_v ren' env tvb in let wb = get_writes eb in (* première branche: le test est vrai => e;w *) let t1 = make_block ren' env (fun ren'' result -> match result with | Some (id,_) -> let v = List.rev (current_vars ren'' (get_writes ef)) in CC_app (CC_var id_w, [CC_expr (phi_of ren''); CC_hole (lt r (phi_of ren'') (mkVar id_phi0))] @(List.map (fun (_,id) -> CC_var id) v) @(CC_hole (eq a (phi_of ren'') (phi_of ren''))) ::(match i with | None -> [] | Some c -> [CC_hole (apply_assert ren'' env c).a_value])), ty | None -> failwith "a block should contain at least one statement") tbl in (* deuxième branche: le test est faux => on sort de la boucle *) let t2,_ = result_tuple ren' before env (CC_expr (constant "tt"),constant "unit") (ef,is) in let b_al = current_vars ren' (get_reads eb) in let qb = force_bool_name qb in let t = make_if_case ren' env ty (CC_var resb,qb) (t1,t2) in let t = make_let_in ren' env tb pb (current_vars ren' wb,qb) (resb,tyb) (t,ty) in let t = let pl = List.map (pre_of_assert false) (list_of_some i) in abs_pre ren' env (t,ty) pl in let t = CC_lam ([var_name Anonymous, CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren'))],t) in let bl = binding_of_alist ren env (current_vars ren' (get_writes ef)) in make_abs (List.rev bl) t let make_while ren env (cphi,r,a) (tb,cb) tbl (i,c) = let (_,ef,_,is) = c in let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in let wf_a_r = Term.applist (constant "well_founded", [a; r]) in let before = current_date ren in let ren' = next ren (get_writes ef) in let al = current_vars ren' (get_writes ef) in let v = let _,lo = input_output ren env c in let is = abstract_post ren' env (ef,is) in match i with | None -> product ren' env before lo is | Some ci -> Term.mkArrow (apply_assert ren' env ci).a_value (product ren' env before lo is) in let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren')) v in let v = n_mkNamedProd v (List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al) in let tw = Term.mkNamedProd id_phi a (Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v) in let id_w = id_of_string "loop" in let vars = List.rev (current_vars ren (get_writes ef)) in let body = make_body_while ren env phi_of a r id_phi0 id_w (tb,cb) tbl (i,c) in CC_app (CC_expr (constant "well_founded_induction"), [CC_expr a; CC_expr r; CC_hole wf_a_r; CC_expr (Term.mkNamedLambda id_phi a v); CC_lam ([id_phi0, CC_typed_binder a; id_w, CC_typed_binder tw], body); CC_expr (phi_of ren)] @(List.map (fun (_,id) -> CC_var id) vars) @(CC_hole (eq a (phi_of ren) (phi_of ren))) ::(match i with | None -> [] | Some c -> [CC_hole (apply_assert ren env c).a_value])) (* [make_letrec ren env (phi0,(cphi,r,a)) bl (te,ce) c] * constructs the term corresponding to the let rec i.e. * * [x][h:P(x)](well_founded_induction * A R ?::(well_founded A R) * [Phi:A] (bl) (x) Phi=phi(x)->(P x)-> \exists x'.res.(Q x x') * [Phi_0:A][w:(Phi:A)(Phi ...] * [bl][x][eq:Phi_0=phi(x)][h:(P x)]te * phi(x) bl x ? ?) *) let make_letrec ren env (id_phi0,(cphi,r,a)) idf bl (te,ce) c = let (_,ef,p,q) = c in let phi_of ren = (apply_pre ren env (anonymous_pre true cphi)).p_value in let wf_a_r = Term.applist (constant "well_founded", [a; r]) in let before = current_date ren in let al = current_vars ren (get_reads ef) in let v = let _,lo = input_output ren env c in let q = abstract_post ren env (ef,q) in arrow ren env (product ren env (current_date ren) lo q) p in let v = Term.mkArrow (eq a (mkVar id_phi) (phi_of ren)) v in let v = n_mkNamedProd v (List.map (fun (id,id') -> (id',trad_type_in_env ren env id)) al) in let v = n_mkNamedProd v (List.map (function (id,CC_typed_binder c) -> (id,c) | _ -> assert false) (List.rev bl)) in let tw = Term.mkNamedProd id_phi a (Term.mkArrow (lt r (mkVar id_phi) (mkVar id_phi0)) v) in let vars = List.rev (current_vars ren (get_reads ef)) in let body = let al = current_vars ren (get_reads ef) in let bod = abs_pre ren env (te,v) p in let bod = CC_lam ([var_name Anonymous, CC_typed_binder (eq a (mkVar id_phi0) (phi_of ren))], bod) in let bl' = binding_of_alist ren env al in make_abs (bl@(List.rev bl')) bod in let t = CC_app (CC_expr (constant "well_founded_induction"), [CC_expr a; CC_expr r; CC_hole wf_a_r; CC_expr (Term.mkNamedLambda id_phi a v); CC_lam ([id_phi0, CC_typed_binder a; idf, CC_typed_binder tw], body); CC_expr (phi_of ren)] @(List.map (fun (id,_) -> CC_var id) bl) @(List.map (fun (_,id) -> CC_var id) vars) @[CC_hole (eq a (phi_of ren) (phi_of ren))] ) in (* on abstrait juste par rapport aux variables de ef *) let al = current_vars ren (get_reads ef) in let bl = binding_of_alist ren env al in make_abs (List.rev bl) t (* [make_access env id c] Access in array id. * * Constructs [t:(array s T)](access_g s T t c ?::(lt c s)). *) let array_info ren env id = let ty = type_in_env env id in let size,v = dearray_type ty in let ty_elem = trad_ml_type_v ren env v in let ty_array = trad_imp_type ren env ty in size,ty_elem,ty_array let make_raw_access ren env (id,id') c = let size,ty_elem,_ = array_info ren env id in Term.applist (constant "access", [size; ty_elem; mkVar id'; c]) let make_pre_access ren env id c = let size,_,_ = array_info ren env id in conj (lt (constant "Zle") (constant "ZERO") c) (lt (constant "Zlt") c size) let make_raw_store ren env (id,id') c1 c2 = let size,ty_elem,_ = array_info ren env id in Term.applist (constant "store", [size; ty_elem; mkVar id'; c1; c2])