(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* int val eq : t -> t -> bool val hcons : t -> t end module HashedList (M : Hashconsed) : sig type t = private Nil | Cons of M.t * int * t val nil : t val cons : M.t -> t -> t end = struct type t = Nil | Cons of M.t * int * t module Self = struct type _t = t type t = _t type u = (M.t -> M.t) let hash = function Nil -> 0 | Cons (_, h, _) -> h let eq l1 l2 = match l1, l2 with | Nil, Nil -> true | Cons (x1, _, l1), Cons (x2, _, l2) -> x1 == x2 && l1 == l2 | _ -> false let hashcons hc = function | Nil -> Nil | Cons (x, h, l) -> Cons (hc x, h, l) end module Hcons = Hashcons.Make(Self) let hcons = Hashcons.simple_hcons Hcons.generate Hcons.hcons M.hcons (** No recursive call: the interface guarantees that all HLists from this program are already hashconsed. If we get some external HList, we can still reconstruct it by traversing it entirely. *) let nil = Nil let cons x l = let h = M.hash x in let hl = match l with Nil -> 0 | Cons (_, h, _) -> h in let h = Hashset.Combine.combine h hl in hcons (Cons (x, h, l)) end module HList = struct module type S = sig type elt type t = private Nil | Cons of elt * int * t val hash : t -> int val nil : t val cons : elt -> t -> t val tip : elt -> t val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a val map : (elt -> elt) -> t -> t val smartmap : (elt -> elt) -> t -> t val exists : (elt -> bool) -> t -> bool val for_all : (elt -> bool) -> t -> bool val for_all2 : (elt -> elt -> bool) -> t -> t -> bool val to_list : t -> elt list end module Make (H : Hashconsed) : S with type elt = H.t = struct type elt = H.t include HashedList(H) let hash = function Nil -> 0 | Cons (_, h, _) -> h let tip e = cons e nil let rec fold f l accu = match l with | Nil -> accu | Cons (x, _, l) -> fold f l (f x accu) let rec map f = function | Nil -> nil | Cons (x, _, l) -> cons (f x) (map f l) let smartmap = map (** Apriori hashconsing ensures that the map is equal to its argument *) let rec exists f = function | Nil -> false | Cons (x, _, l) -> f x || exists f l let rec for_all f = function | Nil -> true | Cons (x, _, l) -> f x && for_all f l let rec for_all2 f l1 l2 = match l1, l2 with | Nil, Nil -> true | Cons (x1, _, l1), Cons (x2, _, l2) -> f x1 x2 && for_all2 f l1 l2 | _ -> false let rec to_list = function | Nil -> [] | Cons (x, _, l) -> x :: to_list l end end module RawLevel = struct open Names type t = | Prop | Set | Level of int * DirPath.t | Var of int (* Hash-consing *) let equal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> Int.equal n n' && DirPath.equal d d' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (i1, dp1), Level (i2, dp2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m let hequal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> n == n' && d == d' | Var n, Var n' -> n == n' | _ -> false let hcons = function | Prop as x -> x | Set as x -> x | Level (n,d) as x -> let d' = Names.DirPath.hcons d in if d' == d then x else Level (n,d') | Var n as x -> x open Hashset.Combine let hash = function | Prop -> combinesmall 1 0 | Set -> combinesmall 1 1 | Var n -> combinesmall 2 n | Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d)) end module Level = struct open Names type raw_level = RawLevel.t = | Prop | Set | Level of int * DirPath.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data (** Hashcons on levels + their hash *) module Self = struct type _t = t type t = _t type u = unit let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data let hash x = x.hash let hashcons () x = let data' = RawLevel.hcons x.data in if x.data == data' then x else { x with data = data' } end let hcons = let module H = Hashcons.Make(Self) in Hashcons.simple_hcons H.generate H.hcons () let make l = hcons { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let var i = make (Var i) let is_small x = match data x with | Level _ -> false | _ -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let compare u v = if u == v then 0 else let c = Int.compare (hash u) (hash v) in if c == 0 then RawLevel.compare (data u) (data v) else c let to_string x = match data x with | Prop -> "Prop" | Set -> "Set" | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n | Var i -> "Var("^string_of_int i^")" let pr u = str (to_string u) let make m n = make (Level (n, Names.DirPath.hcons m)) end (** Level sets and maps *) module LMap = HMap.Make (Level) module LSet = LMap.Set type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int type _t = t (* Hashing of expressions *) module ExprHash = struct type t = _t type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let eq l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module HExpr = struct module H = Hashcons.Make(ExprHash) type t = ExprHash.t let hcons = Hashcons.simple_hcons H.generate H.hcons Level.hcons let hash = ExprHash.hash let eq x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) end let hcons = HExpr.hcons let make l = hcons (l, 0) let prop = make Level.prop let set = make Level.set let type1 = hcons (Level.set, 1) let is_prop = function | (l,0) -> Level.is_prop l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && Level.is_small v) else false let successor (u,n) = if Level.is_prop u then type1 else hcons (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_prop u then hcons (Level.set,n+k) else hcons (u,n+k) let super (u,n as x) (v,n' as y) = let cmp = Level.compare u v in if Int.equal cmp 0 then if n < n' then Inl true else Inl false else if is_prop x then Inl true else if is_prop y then Inl false else Inr cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let level = function | (v,0) -> Some v | _ -> None let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then hcons (Level.set, n) else hcons (v', n) end module Huniv = HList.Make(Expr.HExpr) type t = Huniv.t open Huniv let equal x y = x == y || (Huniv.hash x == Huniv.hash y && Huniv.for_all2 Expr.equal x y) let make l = Huniv.tip (Expr.make l) let tip x = Huniv.tip x let pr l = match l with | Cons (u, _, Nil) -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr (to_list l)) ++ str ")" let level l = match l with | Cons (l, _, Nil) -> Expr.level l | _ -> None (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip (Expr.successor Expr.set) let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies juste above the universe variable u. Used to type the sort u. *) let super l = Huniv.map (fun x -> Expr.successor x) l let addn n l = Huniv.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | Nil, _ -> l2 | _, Nil -> l1 | Cons (h1, _, t1), Cons (h2, _, t2) -> (match Expr.super h1 h2 with | Inl true (* h1 < h2 *) -> merge_univs t1 l2 | Inl false -> merge_univs l1 t2 | Inr c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | Cons (b, _, l') -> (match Expr.super a b with | Inl false -> aux a l' | Inl true -> l | Inr c -> if c <= 0 then cons a l else cons b (aux a l')) | Nil -> cons a l in fold (fun a acc -> aux a acc) u nil (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let empty = nil let exists = Huniv.exists let for_all = Huniv.for_all let smartmap = Huniv.smartmap end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super open Universe (* Comparison on this type is pointer equality *) type canonical_arc = { univ: Level.t; lt: Level.t list; le: Level.t list; rank : int; predicative : bool} let terminal u = {univ=u; lt=[]; le=[]; rank=0; predicative=false} module UMap : sig type key = Level.t type +'a t val empty : 'a t val add : key -> 'a -> 'a t -> 'a t val find : key -> 'a t -> 'a val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b end = HMap.Make(Level) (* A Level.t is either an alias for another one, or a canonical one, for which we know the universes that are above *) type univ_entry = Canonical of canonical_arc | Equiv of Level.t type universes = univ_entry UMap.t let enter_equiv_arc u v g = UMap.add u (Equiv v) g let enter_arc ca g = UMap.add ca.univ (Canonical ca) g (* Every Level.t has a unique canonical arc representative *) (* repr : universes -> Level.t -> canonical_arc *) (* canonical representative : we follow the Equiv links *) let repr g u = let rec repr_rec u = let a = try UMap.find u g with Not_found -> anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined.") in match a with | Equiv v -> repr_rec v | Canonical arc -> arc in repr_rec u let get_set_arc g = repr g Level.set exception AlreadyDeclared let add_universe vlev strict g = try let _arcv = UMap.find vlev g in raise AlreadyDeclared with Not_found -> let v = terminal vlev in let arc = let arc = get_set_arc g in if strict then { arc with lt=vlev::arc.lt} else { arc with le=vlev::arc.le} in let g = enter_arc arc g in enter_arc v g (* reprleq : canonical_arc -> canonical_arc list *) (* All canonical arcv such that arcu<=arcv with arcv#arcu *) let reprleq g arcu = let rec searchrec w = function | [] -> w | v :: vl -> let arcv = repr g v in if List.memq arcv w || arcu==arcv then searchrec w vl else searchrec (arcv :: w) vl in searchrec [] arcu.le (* between : Level.t -> canonical_arc -> canonical_arc list *) (* between u v = { w | u<=w<=v, w canonical } *) (* between is the most costly operation *) let between g arcu arcv = (* good are all w | u <= w <= v *) (* bad are all w | u <= w ~<= v *) (* find good and bad nodes in {w | u <= w} *) (* explore b u = (b or "u is good") *) let rec explore ((good, bad, b) as input) arcu = if List.memq arcu good then (good, bad, true) (* b or true *) else if List.memq arcu bad then input (* (good, bad, b or false) *) else let leq = reprleq g arcu in (* is some universe >= u good ? *) let good, bad, b_leq = List.fold_left explore (good, bad, false) leq in if b_leq then arcu::good, bad, true (* b or true *) else good, arcu::bad, b (* b or false *) in let good,_,_ = explore ([arcv],[],false) arcu in good (* We assume compare(u,v) = LE with v canonical (see compare below). In this case List.hd(between g u v) = repr u Otherwise, between g u v = [] *) type constraint_type = Lt | Le | Eq let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ? In [strict] mode, we fully distinguish between LE and LT, while in non-strict mode, we simply answer LE for both situations. If [arcv] is encountered in a LT part, we could directly answer without visiting unneeded parts of this transitive closure. In [strict] mode, if [arcv] is encountered in a LE part, we could only change the default answer (1st arg [c]) from NLE to LE, since a strict constraint may appear later. During the recursive traversal, [lt_done] and [le_done] are universes we have already visited, they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)], two lists of universes not yet considered, known to be above [arcu], strictly or not. We use depth-first search, but the presence of [arcv] in [new_lt] is checked as soon as possible : this seems to be slightly faster on a test. *) type fast_order = FastEQ | FastLT | FastLE | FastNLE let fast_compare_neq strict g arcu arcv = (* [c] characterizes whether arcv has already been related to arcu among the lt_done,le_done universe *) let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with | [],[] -> c | arc::lt_todo, le_todo -> if List.memq arc lt_done then cmp c lt_done le_done lt_todo le_todo else let rec find lt_todo lt le = match le with | [] -> begin match lt with | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le end | u :: le -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le in find lt_todo arc.lt arc.le | [], arc::le_todo -> if arc == arcv then (* No need to continue inspecting universes above arc: if arcv is strictly above arc, then we would have a cycle. But we cannot answer LE yet, a stronger constraint may come later from [le_todo]. *) if strict then cmp FastLE lt_done le_done [] le_todo else FastLE else if (List.memq arc lt_done) || (List.memq arc le_done) then cmp c lt_done le_done [] le_todo else let rec find lt_todo lt = match lt with | [] -> let fold accu u = let node = repr g u in node :: accu in let le_new = List.fold_left fold le_todo arc.le in cmp c lt_done (arc :: le_done) lt_todo le_new | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt in find [] arc.lt in cmp FastNLE [] [] [] [arcu] let fast_compare g arcu arcv = if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv let is_leq g arcu arcv = arcu == arcv || (match fast_compare_neq false g arcu arcv with | FastNLE -> false | (FastEQ|FastLE|FastLT) -> true) let is_lt g arcu arcv = if arcu == arcv then false else match fast_compare_neq true g arcu arcv with | FastLT -> true | (FastEQ|FastLE|FastNLE) -> false (* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ compare(u,v) = LT or LE => compare(v,u) = NLE compare(u,v) = NLE => compare(v,u) = NLE or LE or LT Adding u>=v is consistent iff compare(v,u) # LT and then it is redundant iff compare(u,v) # NLE Adding u>v is consistent iff compare(v,u) = NLE and then it is redundant iff compare(u,v) = LT *) (** * Universe checks [check_eq] and [check_leq], used in coqchk *) (** First, checks on universe levels *) let check_equal g u v = let arcu = repr g u in let arcv = repr g v in arcu == arcv let check_eq_level g u v = u == v || check_equal g u v let is_set_arc u = Level.is_set u.univ let is_prop_arc u = Level.is_prop u.univ let check_smaller g strict u v = let arcu = repr g u in let arcv = repr g v in if strict then is_lt g arcu arcv else is_prop_arc arcu || (is_set_arc arcu && arcv.predicative) || is_leq g arcu arcv (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_equal_expr g x y = x == y || (let (u, n) = x and (v, m) = y in Int.equal n m && check_equal g u v) let check_eq_univs g l1 l2 = let f x1 x2 = check_equal_expr g x1 x2 in let exists x1 l = Huniv.exists (fun x2 -> f x1 x2) l in Huniv.for_all (fun x1 -> exists x1 l2) l1 && Huniv.for_all (fun x2 -> exists x2 l1) l2 let check_eq g u v = Universe.equal u v || check_eq_univs g u v let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Huniv.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Huniv.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || Universe.is_type0m u || check_eq_univs g u v || real_check_leq g u v (** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *) (** To speed up tests of Set Level.t -> reason -> unit *) (* forces u > v *) (* this is normally an update of u in g rather than a creation. *) let setlt g arcu arcv = let arcu' = {arcu with lt=arcv.univ::arcu.lt} in let g = if is_set_arc arcu then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setlt_if (g,arcu) v = let arcv = repr g v in if is_lt g arcu arcv then g, arcu else setlt g arcu arcv (* setleq : Level.t -> Level.t -> unit *) (* forces u >= v *) (* this is normally an update of u in g rather than a creation. *) let setleq g arcu arcv = let arcu' = {arcu with le=arcv.univ::arcu.le} in let g = if is_set_arc arcu' then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setleq_if (g,arcu) v = let arcv = repr g v in if is_leq g arcu arcv then g, arcu else setleq g arcu arcv (* merge : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = LE *) (* merge u v forces u ~ v with repr u as canonical repr *) let merge g arcu arcv = (* we find the arc with the biggest rank, and we redirect all others to it *) let arcu, g, v = let best_ranked (max_rank, old_max_rank, best_arc, rest) arc = if Level.is_small arc.univ || arc.rank >= max_rank then (arc.rank, max_rank, arc, best_arc::rest) else (max_rank, old_max_rank, best_arc, arc::rest) in match between g arcu arcv with | [] -> anomaly (str "Univ.between.") | arc::rest -> let (max_rank, old_max_rank, best_arc, rest) = List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in if max_rank > old_max_rank then best_arc, g, rest else begin (* one redirected node also has max_rank *) let arcu = {best_arc with rank = max_rank + 1} in arcu, enter_arc arcu g, rest end in let redirect (g,w,w') arcv = let g' = enter_equiv_arc arcv.univ arcu.univ g in (g',List.unionq arcv.lt w,arcv.le@w') in let (g',w,w') = List.fold_left redirect (g,[],[]) v in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu w in let g_arcu = List.fold_left setleq_if g_arcu w' in fst g_arcu (* merge_disc : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = compare(v,u) = NLE *) (* merge_disc u v forces u ~ v with repr u as canonical repr *) let merge_disc g arc1 arc2 = let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in let arcu, g = if not (Int.equal arc1.rank arc2.rank) then arcu, g else let arcu = {arcu with rank = succ arcu.rank} in arcu, enter_arc arcu g in let g' = enter_equiv_arc arcv.univ arcu.univ g in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in let g_arcu = List.fold_left setleq_if g_arcu arcv.le in fst g_arcu (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v = raise (UniverseInconsistency (o,make u,make v)) (* enforc_univ_eq : Level.t -> Level.t -> unit *) (* enforc_univ_eq u v will force u=v if possible, will fail otherwise *) let enforce_univ_eq u v g = let arcu = repr g u in let arcv = repr g v in match fast_compare g arcu arcv with | FastEQ -> g | FastLT -> error_inconsistency Eq v u | FastLE -> merge g arcu arcv | FastNLE -> (match fast_compare g arcv arcu with | FastLT -> error_inconsistency Eq u v | FastLE -> merge g arcv arcu | FastNLE -> merge_disc g arcu arcv | FastEQ -> anomaly (Pp.str "Univ.compare.")) (* enforce_univ_leq : Level.t -> Level.t -> unit *) (* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let arcu = repr g u in let arcv = repr g v in if is_leq g arcu arcv then g else match fast_compare g arcv arcu with | FastLT -> error_inconsistency Le u v | FastLE -> merge g arcv arcu | FastNLE -> fst (setleq g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") (* enforce_univ_lt u v will force u g | FastLE -> fst (setlt g arcu arcv) | FastEQ -> error_inconsistency Lt u v | FastNLE -> match fast_compare_neq false g arcv arcu with FastNLE -> fst (setlt g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") | FastLE | FastLT -> error_inconsistency Lt u v (* Prop = Set is forbidden here. *) let initial_universes = let g = enter_arc (terminal Level.set) UMap.empty in let g = enter_arc (terminal Level.prop) g in enforce_univ_lt Level.prop Level.set g (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = fold (fun (u1,op,u2) pp_std -> pp_std ++ prl u1 ++ pr_constraint_type op ++ prl u2 ++ fnl () ) c (str "") end let empty_constraint = Constraint.empty let merge_constraints c g = Constraint.fold enforce_constraint c g type constraints = Constraint.t (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then if Level.equal x y then (* u+(k+1) <= u *) raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u)) else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints.") let check_univ_leq_one u v = Universe.exists (Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = match v with | Universe.Huniv.Cons (v, _, Universe.Huniv.Nil) -> Universe.Huniv.fold (fun u -> constraint_add_leq u v) u c | _ -> anomaly (Pp.str"A universe bound can only be a variable.") let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val equal : t -> t -> bool val subst_fn : universe_level_subst_fn -> t -> t val subst : universe_level_subst -> t -> t val pr : t -> Pp.std_ppcmds val check_eq : t check_function val length : t -> int val append : t -> t -> t end = struct type t = Level.t array let empty : t = [||] module HInstancestruct = struct type _t = t type t = _t type u = Level.t -> Level.t let hashcons huniv a = let len = Array.length a in if Int.equal len 0 then empty else begin for i = 0 to len - 1 do let x = Array.unsafe_get a i in let x' = huniv x in if x == x' then () else Array.unsafe_set a i x' done; a end let eq t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hash a = let accu = ref 0 in for i = 0 to Array.length a - 1 do let l = Array.unsafe_get a i in let h = Level.hash l in accu := Hashset.Combine.combine !accu h; done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in h end module HInstance = Hashcons.Make(HInstancestruct) let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons let empty = hcons [||] let is_empty x = Int.equal (Array.length x) 0 let subst_fn fn t = let t' = CArray.smartmap fn t in if t' == t then t else hcons t' let subst s t = let t' = CArray.smartmap (fun x -> try LMap.find x s with Not_found -> x) t in if t' == t then t else hcons t' let pr = prvect_with_sep spc Level.pr let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) let check_eq g t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) let length = Array.length let append = Array.append end (** Substitute instance inst for ctx in csts *) let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.smartmap (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty type universe_instance = Instance.t type 'a puniverses = 'a * Instance.t (** A context of universe levels with universe constraints, representiong local universe variables and constraints *) module UContext = struct type t = Instance.t constrained (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let make x = x let instance (univs, cst) = univs let constraints (univs, cst) = cst let size (univs, _) = Instance.length univs let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (Instance.pr univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) end type universe_context = UContext.t module AUContext = struct include UContext let repr (inst, cst) = (Array.mapi (fun i l -> Level.var i) inst, cst) let instantiate inst (u, cst) = assert (Array.length u = Array.length inst); subst_instance_constraints inst cst end type abstract_universe_context = AUContext.t module CumulativityInfo = struct type t = universe_context * universe_context let make x = if (Array.length (UContext.instance (snd x))) = (Array.length (UContext.instance (fst x))) * 2 then x else anomaly (Pp.str "Invalid subtyping information encountered!") let empty = (UContext.empty, UContext.empty) let halve_context ctx = let len = Array.length ctx in let halflen = len / 2 in ((Array.sub ctx 0 halflen), (Array.sub ctx halflen halflen)) let univ_context (univcst, subtypcst) = univcst let subtyp_context (univcst, subtypcst) = subtypcst let create_trivial_subtyping ctx ctx' = CArray.fold_left_i (fun i cst l -> Constraint.add (l, Eq, Array.get ctx' i) cst) Constraint.empty ctx let from_universe_context univcst freshunivs = let inst = (UContext.instance univcst) in assert (Array.length freshunivs = Array.length inst); (univcst, UContext.make (Array.append inst freshunivs, create_trivial_subtyping inst freshunivs)) let subtyping_other_instance (univcst, subtypcst) = let (_, ctx') = (halve_context (UContext.instance subtypcst)) in ctx' let subtyping_susbst (univcst, subtypcst) = let (ctx, ctx') = (halve_context (UContext.instance subtypcst)) in Array.fold_left2 (fun subst l1 l2 -> LMap.add l1 l2 subst) LMap.empty ctx ctx' end type cumulativity_info = CumulativityInfo.t module ACumulativityInfo = CumulativityInfo type abstract_cumulativity_info = ACumulativityInfo.t module ContextSet = struct type t = LSet.t constrained let empty = LSet.empty, Constraint.empty let constraints (_, cst) = cst let levels (ctx, _) = ctx let make ctx cst = (ctx, cst) end type universe_context_set = ContextSet.t (** Instance subtyping *) let check_subtype univs ctxT ctx = if AUContext.size ctx == AUContext.size ctx then let (inst, cst) = AUContext.repr ctx in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v false accu in let univs = Array.fold_left push univs inst in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Substitutions. *) let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let make_abstract_instance (ctx, _) = Array.mapi (fun i l -> Level.var i) ctx (** Substitute instance inst for ctx in csts *) let instantiate_univ_context (ctx, csts) = (ctx, subst_instance_constraints ctx csts) let instantiate_cumulativity_info (ctx, ctx') = (instantiate_univ_context ctx, instantiate_univ_context ctx') (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = Universe.Huniv.fold (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u)) substs nosubst let merge_context strict ctx g = let g = Array.fold_left (* Be lenient, module typing reintroduces universes and constraints due to includes *) (fun g v -> try add_universe v strict g with AlreadyDeclared -> g) g (UContext.instance ctx) in merge_constraints (UContext.constraints ctx) g let merge_context_set strict ctx g = let g = LSet.fold (fun v g -> try add_universe v strict g with AlreadyDeclared -> g) (ContextSet.levels ctx) g in merge_constraints (ContextSet.constraints ctx) g (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_arc = function | _, Canonical {univ=u; lt=[]; le=[]} -> mt () | _, Canonical {univ=u; lt=lt; le=le} -> let opt_sep = match lt, le with | [], _ | _, [] -> mt () | _ -> spc () in Level.pr u ++ str " " ++ v 0 (pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++ opt_sep ++ pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++ fnl () | u, Equiv v -> Level.pr u ++ str " = " ++ Level.pr v ++ fnl () let pr_universes g = let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in prlist pr_arc graph