(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* InProp | Prop Pos -> InSet | Type _ -> InType let family_equal = (==) (********************************************************************) (* Constructions as implemented *) (********************************************************************) let rec strip_outer_cast c = match c with | Cast (c,_,_) -> strip_outer_cast c | _ -> c let collapse_appl c = match c with | App (f,cl) -> let rec collapse_rec f cl2 = match (strip_outer_cast f) with | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2) | _ -> App (f,cl2) in collapse_rec f cl | _ -> c let decompose_app c = match collapse_appl c with | App (f,cl) -> (f, Array.to_list cl) | _ -> (c,[]) let applist (f,l) = App (f, Array.of_list l) (****************************************************************************) (* Functions for dealing with constr terms *) (****************************************************************************) (*********************) (* Occurring *) (*********************) let iter_constr_with_binders g f n c = match c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> () | Cast (c,_,t) -> f n c; f n t | Prod (_,t,c) -> f n t; f (g n) c | Lambda (_,t,c) -> f n t; f (g n) c | LetIn (_,b,t,c) -> f n b; f n t; f (g n) c | App (c,l) -> f n c; Array.iter (f n) l | Evar (_,l) -> Array.iter (f n) l | Case (_,p,c,bl) -> f n p; f n c; Array.iter (f n) bl | Fix (_,(_,tl,bl)) -> Array.iter (f n) tl; Array.iter (f (iterate g (Array.length tl) n)) bl | CoFix (_,(_,tl,bl)) -> Array.iter (f n) tl; Array.iter (f (iterate g (Array.length tl) n)) bl exception LocalOccur (* (closedn n M) raises FreeVar if a variable of height greater than n occurs in M, returns () otherwise *) let closedn n c = let rec closed_rec n c = match c with | Rel m -> if m>n then raise LocalOccur | _ -> iter_constr_with_binders succ closed_rec n c in try closed_rec n c; true with LocalOccur -> false (* [closed0 M] is true iff [M] is a (deBruijn) closed term *) let closed0 = closedn 0 (* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *) let noccurn n term = let rec occur_rec n c = match c with | Rel m -> if Int.equal m n then raise LocalOccur | _ -> iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M for n <= p < n+m *) let noccur_between n m term = let rec occur_rec n c = match c with | Rel(p) -> if n<=p && p iter_constr_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* Checking function for terms containing existential variables. The function [noccur_with_meta] considers the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let noccur_with_meta n m term = let rec occur_rec n c = match c with | Rel p -> if n<=p && p (match f with | (Cast (Meta _,_,_)| Meta _) -> () | _ -> iter_constr_with_binders succ occur_rec n c) | Evar (_, _) -> () | _ -> iter_constr_with_binders succ occur_rec n c in try (occur_rec n term; true) with LocalOccur -> false (*********************) (* Lifting *) (*********************) let map_constr_with_binders g f l c = match c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> c | Cast (c,k,t) -> Cast (f l c, k, f l t) | Prod (na,t,c) -> Prod (na, f l t, f (g l) c) | Lambda (na,t,c) -> Lambda (na, f l t, f (g l) c) | LetIn (na,b,t,c) -> LetIn (na, f l b, f l t, f (g l) c) | App (c,al) -> App (f l c, Array.map (f l) al) | Evar (e,al) -> Evar (e, Array.map (f l) al) | Case (ci,p,c,bl) -> Case (ci, f l p, f l c, Array.map (f l) bl) | Fix (ln,(lna,tl,bl)) -> let l' = iterate g (Array.length tl) l in Fix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) | CoFix(ln,(lna,tl,bl)) -> let l' = iterate g (Array.length tl) l in CoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl)) (* The generic lifting function *) let rec exliftn el c = match c with | Rel i -> Rel(reloc_rel i el) | _ -> map_constr_with_binders el_lift exliftn el c (* Lifting the binding depth across k bindings *) let liftn k n = match el_liftn (pred n) (el_shft k el_id) with | ELID -> (fun c -> c) | el -> exliftn el let lift k = liftn k 1 (*********************) (* Substituting *) (*********************) (* (subst1 M c) substitutes M for Rel(1) in c we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel M1,...,Mn for respectively Rel(1),...,Rel(n) in c *) (* 1st : general case *) type info = Closed | Open | Unknown type 'a substituend = { mutable sinfo: info; sit: 'a } let rec lift_substituend depth s = match s.sinfo with | Closed -> s.sit | Open -> lift depth s.sit | Unknown -> s.sinfo <- if closed0 s.sit then Closed else Open; lift_substituend depth s let make_substituend c = { sinfo=Unknown; sit=c } let substn_many lamv n c = let lv = Array.length lamv in if Int.equal lv 0 then c else let rec substrec depth c = match c with | Rel k -> if k<=depth then c else if k-depth <= lv then lift_substituend depth lamv.(k-depth-1) else Rel (k-lv) | _ -> map_constr_with_binders succ substrec depth c in substrec n c let substnl laml n = substn_many (Array.map make_substituend (Array.of_list laml)) n let substl laml = substnl laml 0 let subst1 lam = substl [lam] (***************************************************************************) (* Type of assumptions and contexts *) (***************************************************************************) let empty_rel_context = [] let rel_context_length = List.length let rel_context_nhyps hyps = let rec nhyps acc = function | [] -> acc | (_,None,_)::hyps -> nhyps (1+acc) hyps | (_,Some _,_)::hyps -> nhyps acc hyps in nhyps 0 hyps let fold_rel_context f l ~init = List.fold_right f l init let map_rel_context f l = let map_decl (n, body_o, typ as decl) = let body_o' = Option.smartmap f body_o in let typ' = f typ in if body_o' == body_o && typ' == typ then decl else (n, body_o', typ') in List.smartmap map_decl l let extended_rel_list n hyps = let rec reln l p = function | (_,None,_) :: hyps -> reln (Rel (n+p) :: l) (p+1) hyps | (_,Some _,_) :: hyps -> reln l (p+1) hyps | [] -> l in reln [] 1 hyps (* Iterate lambda abstractions *) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = let rec lamrec = function | ([], b) -> b | ((v,t)::l, b) -> lamrec (l, Lambda (v,t,b)) in lamrec (l,b) (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam = let rec lamdec_rec l c = match c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec [] (* Decompose lambda abstractions and lets, until finding n abstractions *) let decompose_lam_n_assum n = if n < 0 then error "decompose_lam_n_assum: integer parameter must be positive"; let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match c with | Lambda (x,t,c) -> lamdec_rec ((x,None,t) :: l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec ((x,Some b,t) :: l) n c | Cast (c,_,_) -> lamdec_rec l n c | c -> error "decompose_lam_n_assum: not enough abstractions" in lamdec_rec empty_rel_context n (* Iterate products, with or without lets *) (* Constructs either [(x:t)c] or [[x=b:t]c] *) let mkProd_or_LetIn (na,body,t) c = match body with | None -> Prod (na, t, c) | Some b -> LetIn (na, b, t, c) let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c) let decompose_prod_assum = let rec prodec_rec l c = match c with | Prod (x,t,c) -> prodec_rec ((x,None,t) :: l) c | LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t) :: l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec empty_rel_context let decompose_prod_n_assum n = if n < 0 then error "decompose_prod_n_assum: integer parameter must be positive"; let rec prodec_rec l n c = if Int.equal n 0 then l,c else match c with | Prod (x,t,c) -> prodec_rec ((x,None,t) :: l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t) :: l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | c -> error "decompose_prod_n_assum: not enough assumptions" in prodec_rec empty_rel_context n (***************************) (* Other term constructors *) (***************************) type arity = rel_context * sorts let mkArity (sign,s) = it_mkProd_or_LetIn (Sort s) sign let destArity = let rec prodec_rec l c = match c with | Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c | LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c | Cast (c,_,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly ~label:"destArity" (Pp.str "not an arity") in prodec_rec [] let rec isArity c = match c with | Prod (_,_,c) -> isArity c | LetIn (_,b,_,c) -> isArity (subst1 b c) | Cast (c,_,_) -> isArity c | Sort _ -> true | _ -> false (*******************************) (* alpha conversion functions *) (*******************************) (* alpha conversion : ignore print names and casts *) let compare_sorts s1 s2 = match s1, s2 with | Prop c1, Prop c2 -> begin match c1, c2 with | Pos, Pos | Null, Null -> true | Pos, Null -> false | Null, Pos -> false end | Type u1, Type u2 -> Universe.equal u1 u2 | Prop _, Type _ -> false | Type _, Prop _ -> false let compare_constr f t1 t2 = match t1, t2 with | Rel n1, Rel n2 -> Int.equal n1 n2 | Meta m1, Meta m2 -> Int.equal m1 m2 | Var id1, Var id2 -> Id.equal id1 id2 | Sort s1, Sort s2 -> compare_sorts s1 s2 | Cast (c1,_,_), _ -> f c1 t2 | _, Cast (c2,_,_) -> f t1 c2 | Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 && f c1 c2 | Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 && f c1 c2 | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 && f t1 t2 && f c1 c2 | App (c1,l1), App (c2,l2) -> if Int.equal (Array.length l1) (Array.length l2) then f c1 c2 && Array.for_all2 f l1 l2 else let (h1,l1) = decompose_app t1 in let (h2,l2) = decompose_app t2 in if Int.equal (List.length l1) (List.length l2) then f h1 h2 && List.for_all2 f l1 l2 else false | Evar (e1,l1), Evar (e2,l2) -> Int.equal e1 e2 && Array.equal f l1 l2 | Const c1, Const c2 -> eq_con_chk c1 c2 | Ind c1, Ind c2 -> eq_ind_chk c1 c2 | Construct (c1,i1), Construct (c2,i2) -> Int.equal i1 i2 && eq_ind_chk c1 c2 | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) -> f p1 p2 && f c1 c2 && Array.equal f bl1 bl2 | Fix ((ln1, i1),(_,tl1,bl1)), Fix ((ln2, i2),(_,tl2,bl2)) -> Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 && Array.equal f tl1 tl2 && Array.equal f bl1 bl2 | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) -> Int.equal ln1 ln2 && Array.equal f tl1 tl2 && Array.equal f bl1 bl2 | _ -> false let rec eq_constr m n = (m == n) || compare_constr eq_constr m n let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)