(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* DirPath.to_string sl | MPbound uid -> "bound("^MBId.to_string uid^")" | MPdot (mp,l) -> debug_string_of_mp mp ^ "." ^ Label.to_string l let rec string_of_mp = function | MPfile sl -> DirPath.to_string sl | MPbound uid -> MBId.to_string uid | MPdot (mp,l) -> string_of_mp mp ^ "." ^ Label.to_string l let string_of_mp mp = if !Flags.debug then debug_string_of_mp mp else string_of_mp mp let prkn kn = let (mp,_,l) = KerName.repr kn in str(string_of_mp mp ^ "." ^ Label.to_string l) let prcon c = let ck = Constant.canonical c in let uk = Constant.user c in if KerName.equal ck uk then prkn uk else (prkn uk ++str"(="++prkn ck++str")") (* Same as noccur_between but may perform reductions. Could be refined more... *) let weaker_noccur_between env x nvars t = if noccur_between x nvars t then Some t else let t' = whd_betadeltaiota env t in if noccur_between x nvars t' then Some t' else None let is_constructor_head t = match fst(decompose_app t) with | Rel _ -> true | _ -> false let conv_ctxt_prefix env (ctx1:rel_context) ctx2 = let rec chk env rctx1 rctx2 = match rctx1, rctx2 with (LocalAssum (_,ty1) as d1)::rctx1', LocalAssum (_,ty2)::rctx2' -> conv env ty1 ty2; chk (push_rel d1 env) rctx1' rctx2' | (LocalDef (_,bd1,ty1) as d1)::rctx1', LocalDef (_,bd2,ty2)::rctx2' -> conv env ty1 ty2; conv env bd1 bd2; chk (push_rel d1 env) rctx1' rctx2' | [],_ -> () | _ -> failwith "non convertible contexts" in chk env (List.rev ctx1) (List.rev ctx2) (************************************************************************) (* Various well-formedness check for inductive declarations *) (* Errors related to inductive constructions *) type inductive_error = | NonPos of env * constr * constr | NotEnoughArgs of env * constr * constr | NotConstructor of env * constr * constr | NonPar of env * constr * int * constr * constr | SameNamesTypes of Id.t | SameNamesConstructors of Id.t | SameNamesOverlap of Id.t list | NotAnArity of Id.t | BadEntry exception InductiveError of inductive_error (************************************************************************) (************************************************************************) (* Typing the arities and constructor types *) let rec sorts_of_constr_args env t = let t = whd_betadeltaiota_nolet env t in match t with | Prod (name,c1,c2) -> let varj = infer_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in varj :: sorts_of_constr_args env1 c2 | LetIn (name,def,ty,c) -> let env1 = push_rel (LocalDef (name,def,ty)) env in sorts_of_constr_args env1 c | _ when is_constructor_head t -> [] | _ -> anomaly ~label:"infos_and_sort" (Pp.str "not a positive constructor") (* Prop and Set are small *) let is_small_sort = function | Prop _ -> true | _ -> false let is_logic_sort = function | Prop Null -> true | _ -> false (* [infos] is a sequence of pair [islogic,issmall] for each type in the product of a constructor or arity *) let is_small_constr infos = List.for_all (fun s -> is_small_sort s) infos let is_logic_constr infos = List.for_all (fun s -> is_logic_sort s) infos (* An inductive definition is a "unit" if it has only one constructor and that all arguments expected by this constructor are logical, this is the case for equality, conjunction of logical properties *) let is_unit constrsinfos = match constrsinfos with (* One info = One constructor *) | [|constrinfos|] -> is_logic_constr constrinfos | [||] -> (* type without constructors *) true | _ -> false let small_unit constrsinfos = let issmall = Array.for_all is_small_constr constrsinfos and isunit = is_unit constrsinfos in issmall, isunit (* check information related to inductive arity *) let typecheck_arity env params inds = let nparamargs = rel_context_nhyps params in let nparamdecls = rel_context_length params in let check_arity arctxt = function | RegularArity mar -> let ar = mar.mind_user_arity in let _ = infer_type env ar in conv env (it_mkProd_or_LetIn (Sort mar.mind_sort) arctxt) ar; ar | TemplateArity par -> check_polymorphic_arity env params par; it_mkProd_or_LetIn (Sort(Type par.template_level)) arctxt in let env_arities = Array.fold_left (fun env_ar ind -> let ar_ctxt = ind.mind_arity_ctxt in let _ = check_ctxt env ar_ctxt in conv_ctxt_prefix env params ar_ctxt; (* Arities (with params) are typed-checked here *) let arity = check_arity ar_ctxt ind.mind_arity in (* mind_nrealargs *) let nrealargs = rel_context_nhyps ar_ctxt - nparamargs in if ind.mind_nrealargs <> nrealargs then failwith "bad number of real inductive arguments"; let nrealargs_ctxt = rel_context_length ar_ctxt - nparamdecls in if ind.mind_nrealdecls <> nrealargs_ctxt then failwith "bad length of real inductive arguments signature"; (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let id = ind.mind_typename in let env_ar' = push_rel (LocalAssum (Name id, arity)) env_ar in env_ar') env inds in env_arities (* Allowed eliminations *) let check_predicativity env s small level = match s, engagement env with Type u, _ -> (* let u' = fresh_local_univ () in *) (* let cst = *) (* merge_constraints (enforce_leq u u' empty_constraint) *) (* (universes env) in *) if not (Univ.check_leq (universes env) level u) then failwith "impredicative Type inductive type" | Prop Pos, ImpredicativeSet -> () | Prop Pos, _ -> if not small then failwith "impredicative Set inductive type" | Prop Null,_ -> () let sort_of_ind = function | RegularArity mar -> mar.mind_sort | TemplateArity par -> Type par.template_level let all_sorts = [InProp;InSet;InType] let small_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts issmall isunit s = match family_of_sort s with (* Type: all elimination allowed *) | InType -> all_sorts (* Small Set is predicative: all elimination allowed *) | InSet when issmall -> all_sorts (* Large Set is necessarily impredicative: forbids large elimination *) | InSet -> small_sorts (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type *) | InProp when isunit -> if issmall then all_sorts else small_sorts (* Other propositions: elimination only to Prop *) | InProp -> logical_sorts let compute_elim_sorts env_ar params mib arity lc = let inst = extended_rel_list 0 params in let env_params = push_rel_context params env_ar in let lc = Array.map (fun c -> hnf_prod_applist env_params (lift (rel_context_length params) c) inst) lc in let s = sort_of_ind arity in let infos = Array.map (sorts_of_constr_args env_params) lc in let (small,unit) = small_unit infos in (* We accept recursive unit types... *) (* compute the max of the sorts of the products of the constructor type *) let level = max_inductive_sort (Array.concat (Array.to_list (Array.map Array.of_list infos))) in check_predicativity env_ar s small level; allowed_sorts small unit s let typecheck_one_inductive env params mib mip = (* mind_typename and mind_consnames not checked *) (* mind_reloc_tbl, mind_nb_constant, mind_nb_args not checked (VM) *) (* mind_arity_ctxt, mind_arity, mind_nrealargs DONE (typecheck_arity) *) (* mind_user_lc *) let _ = Array.map (infer_type env) mip.mind_user_lc in (* mind_nf_lc *) let _ = Array.map (infer_type env) mip.mind_nf_lc in Array.iter2 (conv env) mip.mind_nf_lc mip.mind_user_lc; (* mind_consnrealdecls *) let check_cons_args c n = let ctx,_ = decompose_prod_assum c in if n <> rel_context_length ctx - rel_context_length params then failwith "bad number of real constructor arguments" in Array.iter2 check_cons_args mip.mind_nf_lc mip.mind_consnrealdecls; (* mind_kelim: checked by positivity criterion ? *) let sorts = compute_elim_sorts env params mib mip.mind_arity mip.mind_nf_lc in let reject_sort s = not (List.mem_f family_equal s sorts) in if List.exists reject_sort mip.mind_kelim then failwith "elimination not allowed"; (* mind_recargs: checked by positivity criterion *) () (************************************************************************) (************************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor | LocalNonPar of int * int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err ntyp env0 nbpar c err = let (lpar,c') = mind_extract_params nbpar c in let env = push_rel_context lpar env0 in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',Rel (kt+nbpar)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',Rel (kt+nbpar)))) | LocalNotConstructor -> raise (InductiveError (NotConstructor (env,c',Rel (ntyp+nbpar)))) | LocalNonPar (n,i,l) -> raise (InductiveError (NonPar (env,c',n,Rel i,Rel (l+nbpar)))) let failwith_non_pos n ntypes c = for k = n to n + ntypes - 1 do if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1))) done let failwith_non_pos_vect n ntypes v = Array.iter (failwith_non_pos n ntypes) v; anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur") let failwith_non_pos_list n ntypes l = List.iter (failwith_non_pos n ntypes) l; anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur") (* Conclusion of constructors: check the inductive type is called with the expected parameters *) let check_correct_par (env,n,ntypes,_) hyps l largs = let nparams = rel_context_nhyps hyps in let largs = Array.of_list largs in if Array.length largs < nparams then raise (IllFormedInd (LocalNotEnoughArgs l)); let (lpar,largs') = Array.chop nparams largs in let nhyps = List.length hyps in let rec check k index = function | [] -> () | LocalDef _ :: hyps -> check k (index+1) hyps | _::hyps -> match whd_betadeltaiota env lpar.(k) with | Rel w when w = index -> check (k-1) (index+1) hyps | _ -> raise (IllFormedInd (LocalNonPar (k+1,index,l))) in check (nparams-1) (n-nhyps) hyps; if not (Array.for_all (noccur_between n ntypes) largs') then failwith_non_pos_vect n ntypes largs' (* Arguments of constructor: check the number of recursive parameters nrecp. the first parameters which are constant in recursive arguments n is the current depth, nmr is the maximum number of possible recursive parameters *) let check_rec_par (env,n,_,_) hyps nrecp largs = let (lpar,_) = List.chop nrecp largs in let rec find index = function | ([],_) -> () | (_,[]) -> failwith "number of recursive parameters cannot be greater than the number of parameters." | (lp,LocalDef _ :: hyps) -> find (index-1) (lp,hyps) | (p::lp,_::hyps) -> (match whd_betadeltaiota env p with | Rel w when w = index -> find (index-1) (lp,hyps) | _ -> failwith "bad number of recursive parameters") in find (n-1) (lpar,List.rev hyps) let lambda_implicit_lift n a = let lambda_implicit a = Lambda(Anonymous,Evar(0,[||]),a) in iterate lambda_implicit n (lift n a) (* This removes global parameters of the inductive types in lc (for nested inductive types only ) *) let abstract_mind_lc env ntyps npars lc = if npars = 0 then lc else let make_abs = List.init ntyps (function i -> lambda_implicit_lift npars (Rel (i+1))) in Array.map (substl make_abs) lc (* [env] is the typing environment [n] is the dB of the last inductive type [ntypes] is the number of inductive types in the definition (i.e. range of inductives is [n; n+ntypes-1]) [lra] is the list of recursive tree of each variable *) let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lpar) = let auxntyp = 1 in let specif = lookup_mind_specif env mi in let env' = let decl = LocalAssum (Anonymous, hnf_prod_applist env (type_of_inductive env (specif,u)) lpar) in push_rel decl env in let ra_env' = (Imbr mi,(Rtree.mk_rec_calls 1).(0)) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') let rec ienv_decompose_prod (env,_,_,_ as ienv) n c = if n=0 then (ienv,c) else let c' = whd_betadeltaiota env c in match c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false (* The recursive function that checks positivity and builds the list of recursive arguments *) let check_positivity_one (env, _,ntypes,_ as ienv) hyps nrecp (_,i as ind) indlc = let lparams = rel_context_length hyps in (* check the inductive types occur positively in [c] *) let rec check_pos (env, n, ntypes, ra_env as ienv) c = let x,largs = decompose_app (whd_betadeltaiota env c) in match x with | Prod (na,b,d) -> assert (List.is_empty largs); (match weaker_noccur_between env n ntypes b with None -> failwith_non_pos_list n ntypes [b] | Some b -> check_pos (ienv_push_var ienv (na, b, mk_norec)) d) | Rel k -> (try let (ra,rarg) = List.nth ra_env (k-1) in (match ra with Mrec _ -> check_rec_par ienv hyps nrecp largs | _ -> ()); if not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs else rarg with Failure _ | Invalid_argument _ -> mk_norec) | Ind ind_kn -> (* If the inductive type being defined appears in a parameter, then we have an imbricated type *) if List.for_all (noccur_between n ntypes) largs then mk_norec else check_positive_imbr ienv (ind_kn, largs) | err -> if noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs then mk_norec else failwith_non_pos_list n ntypes (x::largs) (* accesses to the environment are not factorised, but is it worth it? *) and check_positive_imbr (env,n,ntypes,ra_env as ienv) ((mi,u), largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnpar = mib.mind_nparams_rec in let nonrecpar = mib.mind_nparams - auxnpar in let (lpar,auxlargs) = try List.chop auxnpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (* If the inductive appears in the args (non params) then the definition is not positive. *) if not (List.for_all (noccur_between n ntypes) auxlargs) then raise (IllFormedInd (LocalNonPos n)); (* We do not deal with imbricated mutual inductive types *) let auxntyp = mib.mind_ntypes in if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc env auxntyp auxnpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),lpar) in (* Parameters expressed in env' *) let lpar' = List.map (lift auxntyp) lpar in let irecargs = (* fails if the inductive type occurs non positively *) (* with recursive parameters substituted *) Array.map (function c -> let c' = hnf_prod_applist env' c lpar' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in check_constructors ienv' false c') auxlcvect in (Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0) (* check the inductive types occur positively in the products of C, if check_head=true, also check the head corresponds to a constructor of the ith type *) and check_constructors ienv check_head c = let rec check_constr_rec (env,n,ntypes,ra_env as ienv) lrec c = let x,largs = decompose_app (whd_betadeltaiota env c) in match x with | Prod (na,b,d) -> assert (List.is_empty largs); let recarg = check_pos ienv b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' (recarg::lrec) d | hd -> if check_head then match hd with | Rel j when j = (n + ntypes - i - 1) -> check_correct_par ienv hyps (ntypes-i) largs | _ -> raise (IllFormedInd LocalNotConstructor) else if not (List.for_all (noccur_between n ntypes) largs) then raise (IllFormedInd (LocalNonPos n)); List.rev lrec in check_constr_rec ienv [] c in let irecargs = Array.map (fun c -> let _,rawc = mind_extract_params lparams c in try check_constructors ienv true rawc with IllFormedInd err -> explain_ind_err (ntypes-i) env lparams c err) indlc in mk_paths (Mrec ind) irecargs let check_subtree t1 t2 = let cmp_labels l1 l2 = l1 == Norec || eq_recarg l1 l2 in if not (Rtree.equiv eq_recarg cmp_labels t1 t2) then failwith "bad recursive trees" (* if t1=t2 then () else msg_warning (str"TODO: check recursive positions")*) let check_positivity env_ar mind params nrecp inds = let ntypes = Array.length inds in let rc = Array.mapi (fun j t -> (Mrec(mind,j),t)) (Rtree.mk_rec_calls ntypes) in let lra_ind = List.rev (Array.to_list rc) in let lparams = rel_context_length params in let check_one i mip = let ra_env = List.init lparams (fun _ -> (Norec,mk_norec)) @ lra_ind in let ienv = (env_ar, 1+lparams, ntypes, ra_env) in check_positivity_one ienv params nrecp (mind,i) mip.mind_nf_lc in let irecargs = Array.mapi check_one inds in let wfp = Rtree.mk_rec irecargs in Array.iter2 (fun ind wfpi -> check_subtree ind.mind_recargs wfpi) inds wfp (************************************************************************) (************************************************************************) let check_inductive env kn mib = Flags.if_verbose Feedback.msg_notice (str " checking ind: " ++ MutInd.print kn); (* check mind_constraints: should be consistent with env *) let env = add_constraints (Univ.UContext.constraints mib.mind_universes) env in (* check mind_record : TODO ? check #constructor = 1 ? *) (* check mind_finite : always OK *) (* check mind_ntypes *) if Array.length mib.mind_packets <> mib.mind_ntypes then error "not the right number of packets"; (* check mind_params_ctxt *) let params = mib.mind_params_ctxt in let _ = check_ctxt env params in (* check mind_nparams *) if rel_context_nhyps params <> mib.mind_nparams then error "number the right number of parameters"; (* mind_packets *) (* - check arities *) let env_ar = typecheck_arity env params mib.mind_packets in (* - check constructor types *) Array.iter (typecheck_one_inductive env_ar params mib) mib.mind_packets; (* check mind_nparams_rec: positivity condition *) check_positivity env_ar kn params mib.mind_nparams_rec mib.mind_packets; (* check mind_equiv... *) (* Now we can add the inductive *) add_mind kn mib env