open Util open Names open Term open Validate (* Bytecode *) type values type reloc_table type to_patch_substituted (*Retroknowledge *) type action type retroknowledge type engagement = ImpredicativeSet let val_eng = val_enum "eng" 1 type polymorphic_arity = { poly_param_levels : Univ.universe option list; poly_level : Univ.universe; } let val_pol_arity = val_tuple ~name:"polyorphic_arity"[|val_list(val_opt val_univ);val_univ|] type constant_type = | NonPolymorphicType of constr | PolymorphicArity of rel_context * polymorphic_arity let val_cst_type = val_sum "constant_type" 0 [|[|val_constr|];[|val_rctxt;val_pol_arity|]|] (** Substitutions, code imported from kernel/mod_subst *) type delta_hint = | Inline of int * constr option | Equiv of kernel_name module Deltamap = struct type t = module_path MPmap.t * delta_hint KNmap.t let empty = MPmap.empty, KNmap.empty let add_kn kn hint (mm,km) = (mm,KNmap.add kn hint km) let add_mp mp mp' (mm,km) = (MPmap.add mp mp' mm, km) let remove_mp mp (mm,km) = (MPmap.remove mp mm, km) let find_mp mp map = MPmap.find mp (fst map) let find_kn kn map = KNmap.find kn (snd map) let mem_mp mp map = MPmap.mem mp (fst map) let mem_kn kn map = KNmap.mem kn (snd map) let fold_kn f map i = KNmap.fold f (snd map) i let fold fmp fkn (mm,km) i = MPmap.fold fmp mm (KNmap.fold fkn km i) let join map1 map2 = fold add_mp add_kn map1 map2 end type delta_resolver = Deltamap.t let empty_delta_resolver = Deltamap.empty module MBImap = Map.Make (struct type t = mod_bound_id let compare = Pervasives.compare end) module Umap = struct type 'a t = 'a MPmap.t * 'a MBImap.t let empty = MPmap.empty, MBImap.empty let is_empty (m1,m2) = MPmap.is_empty m1 && MBImap.is_empty m2 let add_mbi mbi x (m1,m2) = (m1,MBImap.add mbi x m2) let add_mp mp x (m1,m2) = (MPmap.add mp x m1, m2) let find_mp mp map = MPmap.find mp (fst map) let find_mbi mbi map = MBImap.find mbi (snd map) let mem_mp mp map = MPmap.mem mp (fst map) let mem_mbi mbi map = MBImap.mem mbi (snd map) let iter_mbi f map = MBImap.iter f (snd map) let fold fmp fmbi (m1,m2) i = MPmap.fold fmp m1 (MBImap.fold fmbi m2 i) let join map1 map2 = fold add_mp add_mbi map1 map2 end type substitution = (module_path * delta_resolver) Umap.t type 'a subst_fun = substitution -> 'a -> 'a let empty_subst = Umap.empty let is_empty_subst = Umap.is_empty let val_delta_hint = val_sum "delta_hint" 0 [|[|val_int; val_opt val_constr|];[|val_kn|]|] let val_res = val_tuple ~name:"delta_resolver" [|val_map ~name:"delta_resolver" val_mp val_mp; val_map ~name:"delta_resolver" val_kn val_delta_hint|] let val_mp_res = val_tuple [|val_mp;val_res|] let val_subst = val_tuple ~name:"substitution" [|val_map ~name:"substitution" val_mp val_mp_res; val_map ~name:"substitution" val_uid val_mp_res|] let add_mbid mbid mp = Umap.add_mbi mbid (mp,empty_delta_resolver) let add_mp mp1 mp2 = Umap.add_mp mp1 (mp2,empty_delta_resolver) let map_mbid mbid mp = add_mbid mbid mp empty_subst let map_mp mp1 mp2 = add_mp mp1 mp2 empty_subst let mp_in_delta mp = Deltamap.mem_mp mp let rec find_prefix resolve mp = let rec sub_mp = function | MPdot(mp,l) as mp_sup -> (try Deltamap.find_mp mp_sup resolve with Not_found -> MPdot(sub_mp mp,l)) | p -> Deltamap.find_mp p resolve in try sub_mp mp with Not_found -> mp (** Nota: the following function is slightly different in mod_subst PL: Is it on purpose ? *) let solve_delta_kn resolve kn = try match Deltamap.find_kn kn resolve with | Equiv kn1 -> kn1 | Inline _ -> raise Not_found with Not_found -> let mp,dir,l = repr_kn kn in let new_mp = find_prefix resolve mp in if mp == new_mp then kn else make_kn new_mp dir l let gen_of_delta resolve x kn fix_can = try let new_kn = solve_delta_kn resolve kn in if kn == new_kn then x else fix_can new_kn with _ -> x let constant_of_delta resolve con = let kn = user_con con in gen_of_delta resolve con kn (constant_of_kn_equiv kn) let constant_of_delta2 resolve con = let kn, kn' = canonical_con con, user_con con in gen_of_delta resolve con kn (constant_of_kn_equiv kn') let mind_of_delta resolve mind = let kn = user_mind mind in gen_of_delta resolve mind kn (mind_of_kn_equiv kn) let mind_of_delta2 resolve mind = let kn, kn' = canonical_mind mind, user_mind mind in gen_of_delta resolve mind kn (mind_of_kn_equiv kn') let find_inline_of_delta kn resolve = match Deltamap.find_kn kn resolve with | Inline (_,o) -> o | _ -> raise Not_found let constant_of_delta_with_inline resolve con = let kn1,kn2 = canonical_con con,user_con con in try find_inline_of_delta kn2 resolve with Not_found -> try find_inline_of_delta kn1 resolve with Not_found -> None let subst_mp0 sub mp = (* 's like subst *) let rec aux mp = match mp with | MPfile sid -> Umap.find_mp mp sub | MPbound bid -> begin try Umap.find_mbi bid sub with Not_found -> Umap.find_mp mp sub end | MPdot (mp1,l) as mp2 -> begin try Umap.find_mp mp2 sub with Not_found -> let mp1',resolve = aux mp1 in MPdot (mp1',l),resolve end in try Some (aux mp) with Not_found -> None let subst_mp sub mp = match subst_mp0 sub mp with None -> mp | Some (mp',_) -> mp' let subst_kn_delta sub kn = let mp,dir,l = repr_kn kn in match subst_mp0 sub mp with Some (mp',resolve) -> solve_delta_kn resolve (make_kn mp' dir l) | None -> kn let subst_kn sub kn = let mp,dir,l = repr_kn kn in match subst_mp0 sub mp with Some (mp',_) -> make_kn mp' dir l | None -> kn exception No_subst type sideconstantsubst = | User | Canonical let gen_subst_mp f sub mp1 mp2 = match subst_mp0 sub mp1, subst_mp0 sub mp2 with | None, None -> raise No_subst | Some (mp',resolve), None -> User, (f mp' mp2), resolve | None, Some (mp',resolve) -> Canonical, (f mp1 mp'), resolve | Some (mp1',_), Some (mp2',resolve2) -> Canonical, (f mp1' mp2'), resolve2 let subst_ind sub mind = let kn1,kn2 = user_mind mind, canonical_mind mind in let mp1,dir,l = repr_kn kn1 in let mp2,_,_ = repr_kn kn2 in let rebuild_mind mp1 mp2 = make_mind_equiv mp1 mp2 dir l in try let side,mind',resolve = gen_subst_mp rebuild_mind sub mp1 mp2 in match side with | User -> mind_of_delta resolve mind' | Canonical -> mind_of_delta2 resolve mind' with No_subst -> mind let subst_con0 sub con = let kn1,kn2 = user_con con,canonical_con con in let mp1,dir,l = repr_kn kn1 in let mp2,_,_ = repr_kn kn2 in let rebuild_con mp1 mp2 = make_con_equiv mp1 mp2 dir l in let dup con = con, Const con in let side,con',resolve = gen_subst_mp rebuild_con sub mp1 mp2 in match constant_of_delta_with_inline resolve con' with | Some t -> con', t | None -> let con'' = match side with | User -> constant_of_delta resolve con' | Canonical -> constant_of_delta2 resolve con' in if con'' == con then raise No_subst else dup con'' let rec map_kn f f' c = let func = map_kn f f' in match c with | Const kn -> (try snd (f' kn) with No_subst -> c) | Ind (kn,i) -> let kn' = f kn in if kn'==kn then c else Ind (kn',i) | Construct ((kn,i),j) -> let kn' = f kn in if kn'==kn then c else Construct ((kn',i),j) | Case (ci,p,ct,l) -> let ci_ind = let (kn,i) = ci.ci_ind in let kn' = f kn in if kn'==kn then ci.ci_ind else kn',i in let p' = func p in let ct' = func ct in let l' = array_smartmap func l in if (ci.ci_ind==ci_ind && p'==p && l'==l && ct'==ct)then c else Case ({ci with ci_ind = ci_ind}, p',ct', l') | Cast (ct,k,t) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Cast (ct', k, t') | Prod (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Prod (na, t', ct') | Lambda (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else Lambda (na, t', ct') | LetIn (na,b,t,ct) -> let ct' = func ct in let t'= func t in let b'= func b in if (t'==t && ct'==ct && b==b') then c else LetIn (na, b', t', ct') | App (ct,l) -> let ct' = func ct in let l' = array_smartmap func l in if (ct'== ct && l'==l) then c else App (ct',l') | Evar (e,l) -> let l' = array_smartmap func l in if (l'==l) then c else Evar (e,l') | Fix (ln,(lna,tl,bl)) -> let tl' = array_smartmap func tl in let bl' = array_smartmap func bl in if (bl == bl'&& tl == tl') then c else Fix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = array_smartmap func tl in let bl' = array_smartmap func bl in if (bl == bl'&& tl == tl') then c else CoFix (ln,(lna,tl',bl')) | _ -> c let subst_mps sub c = if is_empty_subst sub then c else map_kn (subst_ind sub) (subst_con0 sub) c type 'a lazy_subst = | LSval of 'a | LSlazy of substitution list * 'a type 'a substituted = 'a lazy_subst ref let val_substituted val_a = val_ref (val_sum "constr_substituted" 0 [|[|val_a|];[|val_list val_subst;val_a|]|]) let from_val a = ref (LSval a) let rec replace_mp_in_mp mpfrom mpto mp = match mp with | _ when mp = mpfrom -> mpto | MPdot (mp1,l) -> let mp1' = replace_mp_in_mp mpfrom mpto mp1 in if mp1==mp1' then mp else MPdot (mp1',l) | _ -> mp let rec mp_in_mp mp mp1 = match mp1 with | _ when mp1 = mp -> true | MPdot (mp2,l) -> mp_in_mp mp mp2 | _ -> false let subset_prefixed_by mp resolver = let mp_prefix mkey mequ rslv = if mp_in_mp mp mkey then Deltamap.add_mp mkey mequ rslv else rslv in let kn_prefix kn hint rslv = match hint with | Inline _ -> rslv | Equiv _ -> if mp_in_mp mp (modpath kn) then Deltamap.add_kn kn hint rslv else rslv in Deltamap.fold mp_prefix kn_prefix resolver empty_delta_resolver let subst_dom_delta_resolver subst resolver = let mp_apply_subst mkey mequ rslv = Deltamap.add_mp (subst_mp subst mkey) mequ rslv in let kn_apply_subst kkey hint rslv = Deltamap.add_kn (subst_kn subst kkey) hint rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_mp_delta sub mp mkey = match subst_mp0 sub mp with None -> empty_delta_resolver,mp | Some (mp',resolve) -> let mp1 = find_prefix resolve mp' in let resolve1 = subset_prefixed_by mp1 resolve in (subst_dom_delta_resolver (map_mp mp1 mkey) resolve1),mp1 let gen_subst_delta_resolver dom subst resolver = let mp_apply_subst mkey mequ rslv = let mkey' = if dom then subst_mp subst mkey else mkey in let rslv',mequ' = subst_mp_delta subst mequ mkey in Deltamap.join rslv' (Deltamap.add_mp mkey' mequ' rslv) in let kn_apply_subst kkey hint rslv = let kkey' = if dom then subst_kn subst kkey else kkey in let hint' = match hint with | Equiv kequ -> Equiv (subst_kn_delta subst kequ) | Inline (lev,Some t) -> Inline (lev,Some (subst_mps subst t)) | Inline (_,None) -> hint in Deltamap.add_kn kkey' hint' rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_codom_delta_resolver = gen_subst_delta_resolver false let subst_dom_codom_delta_resolver = gen_subst_delta_resolver true let update_delta_resolver resolver1 resolver2 = let mp_apply_rslv mkey mequ rslv = if Deltamap.mem_mp mkey resolver2 then rslv else Deltamap.add_mp mkey (find_prefix resolver2 mequ) rslv in let kn_apply_rslv kkey hint rslv = if Deltamap.mem_kn kkey resolver2 then rslv else let hint' = match hint with | Equiv kequ -> Equiv (solve_delta_kn resolver2 kequ) | _ -> hint in Deltamap.add_kn kkey hint' rslv in Deltamap.fold mp_apply_rslv kn_apply_rslv resolver1 empty_delta_resolver let add_delta_resolver resolver1 resolver2 = if resolver1 == resolver2 then resolver2 else if resolver2 = empty_delta_resolver then resolver1 else Deltamap.join (update_delta_resolver resolver1 resolver2) resolver2 let substition_prefixed_by k mp subst = let mp_prefixmp kmp (mp_to,reso) sub = if mp_in_mp mp kmp && mp <> kmp then let new_key = replace_mp_in_mp mp k kmp in Umap.add_mp new_key (mp_to,reso) sub else sub in let mbi_prefixmp mbi _ sub = sub in Umap.fold mp_prefixmp mbi_prefixmp subst empty_subst let join subst1 subst2 = let apply_subst mpk add (mp,resolve) res = let mp',resolve' = match subst_mp0 subst2 mp with | None -> mp, None | Some (mp',resolve') -> mp', Some resolve' in let resolve'' = match resolve' with | Some res -> add_delta_resolver (subst_dom_codom_delta_resolver subst2 resolve) res | None -> subst_codom_delta_resolver subst2 resolve in let prefixed_subst = substition_prefixed_by mpk mp' subst2 in Umap.join prefixed_subst (add (mp',resolve'') res) in let mp_apply_subst mp = apply_subst mp (Umap.add_mp mp) in let mbi_apply_subst mbi = apply_subst (MPbound mbi) (Umap.add_mbi mbi) in let subst = Umap.fold mp_apply_subst mbi_apply_subst subst1 empty_subst in Umap.join subst2 subst let force fsubst r = match !r with | LSval a -> a | LSlazy(s,a) -> let subst = List.fold_left join empty_subst (List.rev s) in let a' = fsubst subst a in r := LSval a'; a' let subst_substituted s r = match !r with | LSval a -> ref (LSlazy([s],a)) | LSlazy(s',a) -> ref (LSlazy(s::s',a)) let force_constr = force subst_mps type constr_substituted = constr substituted let val_cstr_subst = val_substituted val_constr let subst_constr_subst = subst_substituted (** Beware! In .vo files, lazy_constr are stored as integers used as indexes for a separate table. The actual lazy_constr is restored later, by [Safe_typing.LightenLibrary.load]. This allows us to use here a different definition of lazy_constr than coqtop: since the checker will inspect all proofs parts, even opaque ones, no need to use Lazy.t here *) type lazy_constr = constr_substituted let subst_lazy_constr = subst_substituted let force_lazy_constr = force_constr let lazy_constr_from_val c = c let val_lazy_constr = val_cstr_subst (** Inlining level of parameters at functor applications. This is ignored by the checker. *) type inline = int option (** A constant can have no body (axiom/parameter), or a transparent body, or an opaque one *) type constant_def = | Undef of inline | Def of constr_substituted | OpaqueDef of lazy_constr let val_cst_def = val_sum "constant_def" 0 [|[|val_opt val_int|]; [|val_cstr_subst|]; [|val_lazy_constr|]|] let subst_constant_def sub = function | Undef inl -> Undef inl | Def c -> Def (subst_constr_subst sub c) | OpaqueDef lc -> OpaqueDef (subst_lazy_constr sub lc) type constant_body = { const_hyps : section_context; (* New: younger hyp at top *) const_body : constant_def; const_type : constant_type; const_body_code : to_patch_substituted; const_constraints : Univ.constraints } let body_of_constant cb = match cb.const_body with | Undef _ -> None | Def c -> Some c | OpaqueDef c -> Some c let constant_has_body cb = match cb.const_body with | Undef _ -> false | Def _ | OpaqueDef _ -> true let is_opaque cb = match cb.const_body with | OpaqueDef _ -> true | Def _ | Undef _ -> false let val_cb = val_tuple ~name:"constant_body" [|val_nctxt; val_cst_def; val_cst_type; no_val; val_cstrs|] let subst_rel_declaration sub (id,copt,t as x) = let copt' = Option.smartmap (subst_mps sub) copt in let t' = subst_mps sub t in if copt == copt' & t == t' then x else (id,copt',t') let subst_rel_context sub = list_smartmap (subst_rel_declaration sub) type recarg = | Norec | Mrec of inductive | Imbr of inductive let val_recarg = val_sum "recarg" 1 (* Norec *) [|[|val_ind|] (* Mrec *);[|val_ind|] (* Imbr *)|] let subst_recarg sub r = match r with | Norec -> r | (Mrec(kn,i)|Imbr (kn,i)) -> let kn' = subst_ind sub kn in if kn==kn' then r else Imbr (kn',i) type wf_paths = recarg Rtree.t let val_wfp = val_rec_sum "wf_paths" 0 (fun val_wfp -> [|[|val_int;val_int|]; (* Rtree.Param *) [|val_recarg;val_array val_wfp|]; (* Rtree.Node *) [|val_int;val_array val_wfp|] (* Rtree.Rec *) |]) let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) let dest_subterms p = let (_,cstrs) = Rtree.dest_node p in Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p (**********************************************************************) (* Representation of mutual inductive types in the kernel *) (* Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn *) type monomorphic_inductive_arity = { mind_user_arity : constr; mind_sort : sorts; } let val_mono_ind_arity = val_tuple ~name:"monomorphic_inductive_arity"[|val_constr;val_sort|] type inductive_arity = | Monomorphic of monomorphic_inductive_arity | Polymorphic of polymorphic_arity let val_ind_arity = val_sum "inductive_arity" 0 [|[|val_mono_ind_arity|];[|val_pol_arity|]|] type one_inductive_body = { (* Primitive datas *) (* Name of the type: [Ii] *) mind_typename : identifier; (* Arity context of [Ii] with parameters: [forall params, Ui] *) mind_arity_ctxt : rel_context; (* Arity sort, original user arity, and allowed elim sorts, if monomorphic *) mind_arity : inductive_arity; (* Names of the constructors: [cij] *) mind_consnames : identifier array; (* Types of the constructors with parameters: [forall params, Tij], where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Un *) mind_user_lc : constr array; (* Derived datas *) (* Number of expected real arguments of the type (no let, no params) *) mind_nrealargs : int; (* Length of realargs context (with let, no params) *) mind_nrealargs_ctxt : int; (* List of allowed elimination sorts *) mind_kelim : sorts_family list; (* Head normalized constructor types so that their conclusion is atomic *) mind_nf_lc : constr array; (* Length of the signature of the constructors (with let, w/o params) *) mind_consnrealdecls : int array; (* Signature of recursive arguments in the constructors *) mind_recargs : wf_paths; (* Datas for bytecode compilation *) (* number of constant constructor *) mind_nb_constant : int; (* number of no constant constructor *) mind_nb_args : int; mind_reloc_tbl : reloc_table; } let val_one_ind = val_tuple ~name:"one_inductive_body" [|val_id;val_rctxt;val_ind_arity;val_array val_id;val_array val_constr; val_int;val_int;val_list val_sortfam;val_array val_constr;val_array val_int; val_wfp;val_int;val_int;no_val|] type mutual_inductive_body = { (* The component of the mutual inductive block *) mind_packets : one_inductive_body array; (* Whether the inductive type has been declared as a record *) mind_record : bool; (* Whether the type is inductive or coinductive *) mind_finite : bool; (* Number of types in the block *) mind_ntypes : int; (* Section hypotheses on which the block depends *) mind_hyps : section_context; (* Number of expected parameters *) mind_nparams : int; (* Number of recursively uniform (i.e. ordinary) parameters *) mind_nparams_rec : int; (* The context of parameters (includes let-in declaration) *) mind_params_ctxt : rel_context; (* Universes constraints enforced by the inductive declaration *) mind_constraints : Univ.constraints; } let val_ind_pack = val_tuple ~name:"mutual_inductive_body" [|val_array val_one_ind;val_bool;val_bool;val_int;val_nctxt; val_int; val_int; val_rctxt;val_cstrs|] let subst_arity sub = function | NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s) | PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s) (* TODO: should be changed to non-coping after Term.subst_mps *) let subst_const_body sub cb = { const_hyps = (assert (cb.const_hyps=[]); []); const_body = subst_constant_def sub cb.const_body; const_type = subst_arity sub cb.const_type; const_body_code = (*Cemitcodes.subst_to_patch_subst sub*) cb.const_body_code; const_constraints = cb.const_constraints} let subst_arity sub = function | Monomorphic s -> Monomorphic { mind_user_arity = subst_mps sub s.mind_user_arity; mind_sort = s.mind_sort; } | Polymorphic s as x -> x let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_typename = mbp.mind_typename; mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt; mind_arity = subst_arity sub mbp.mind_arity; mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind sub mib = { mind_record = mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = (assert (mib.mind_hyps=[]); []) ; mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = map_rel_context (subst_mps sub) mib.mind_params_ctxt; mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ; mind_constraints = mib.mind_constraints } (* Modules *) (* Whenever you change these types, please do update the validation functions below *) type structure_field_body = | SFBconst of constant_body | SFBmind of mutual_inductive_body | SFBmodule of module_body | SFBmodtype of module_type_body and structure_body = (label * structure_field_body) list and struct_expr_body = | SEBident of module_path | SEBfunctor of mod_bound_id * module_type_body * struct_expr_body | SEBapply of struct_expr_body * struct_expr_body * Univ.constraints | SEBstruct of structure_body | SEBwith of struct_expr_body * with_declaration_body and with_declaration_body = With_module_body of identifier list * module_path | With_definition_body of identifier list * constant_body and module_body = { mod_mp : module_path; mod_expr : struct_expr_body option; mod_type : struct_expr_body; mod_type_alg : struct_expr_body option; mod_constraints : Univ.constraints; mod_delta : delta_resolver; mod_retroknowledge : action list} and module_type_body = { typ_mp : module_path; typ_expr : struct_expr_body; typ_expr_alg : struct_expr_body option ; typ_constraints : Univ.constraints; typ_delta :delta_resolver} (* the validation functions: *) let rec val_sfb o = val_sum "struct_field_body" 0 [|[|val_cb|]; (* SFBconst *) [|val_ind_pack|]; (* SFBmind *) [|val_module|]; (* SFBmodule *) [|val_modtype|] (* SFBmodtype *) |] o and val_sb o = val_list (val_tuple ~name:"label*sfb"[|val_id;val_sfb|]) o and val_seb o = val_sum "struct_expr_body" 0 [|[|val_mp|]; (* SEBident *) [|val_uid;val_modtype;val_seb|]; (* SEBfunctor *) [|val_seb;val_seb;val_cstrs|]; (* SEBapply *) [|val_sb|]; (* SEBstruct *) [|val_seb;val_with|] (* SEBwith *) |] o and val_with o = val_sum "with_declaration_body" 0 [|[|val_list val_id;val_mp|]; [|val_list val_id;val_cb|]|] o and val_module o = val_tuple ~name:"module_body" [|val_mp;val_opt val_seb;val_seb; val_opt val_seb;val_cstrs;val_res;no_val|] o and val_modtype o = val_tuple ~name:"module_type_body" [|val_mp;val_seb;val_opt val_seb;val_cstrs;val_res|] o let rec subst_with_body sub = function | With_module_body(id,mp) -> With_module_body(id,subst_mp sub mp) | With_definition_body(id,cb) -> With_definition_body( id,subst_const_body sub cb) and subst_modtype sub mtb= let typ_expr' = subst_struct_expr sub mtb.typ_expr in let typ_alg' = Option.smartmap (subst_struct_expr sub) mtb.typ_expr_alg in let mp = subst_mp sub mtb.typ_mp in if typ_expr'==mtb.typ_expr && typ_alg'==mtb.typ_expr_alg && mp==mtb.typ_mp then mtb else {mtb with typ_mp = mp; typ_expr = typ_expr'; typ_expr_alg = typ_alg'} and subst_structure sub sign = let subst_body = function SFBconst cb -> SFBconst (subst_const_body sub cb) | SFBmind mib -> SFBmind (subst_mind sub mib) | SFBmodule mb -> SFBmodule (subst_module sub mb) | SFBmodtype mtb -> SFBmodtype (subst_modtype sub mtb) in List.map (fun (l,b) -> (l,subst_body b)) sign and subst_module sub mb = let mtb' = subst_struct_expr sub mb.mod_type in let typ_alg' = Option.smartmap (subst_struct_expr sub ) mb.mod_type_alg in let me' = Option.smartmap (subst_struct_expr sub) mb.mod_expr in let mp = subst_mp sub mb.mod_mp in if mtb'==mb.mod_type && mb.mod_expr == me' && mp == mb.mod_mp then mb else { mb with mod_mp = mp; mod_expr = me'; mod_type_alg = typ_alg'; mod_type=mtb'} and subst_struct_expr sub = function | SEBident mp -> SEBident (subst_mp sub mp) | SEBfunctor (mbid, mtb, meb') -> SEBfunctor(mbid,subst_modtype sub mtb ,subst_struct_expr sub meb') | SEBstruct (str)-> SEBstruct( subst_structure sub str) | SEBapply (meb1,meb2,cst)-> SEBapply(subst_struct_expr sub meb1, subst_struct_expr sub meb2, cst) | SEBwith (meb,wdb)-> SEBwith(subst_struct_expr sub meb, subst_with_body sub wdb)