From 4f0ad99adb04e7f2888e75f2a10e8c916dde179b Mon Sep 17 00:00:00 2001 From: letouzey Date: Tue, 3 Nov 2009 08:24:06 +0000 Subject: OrderedType implementation for various numerical datatypes + min/max structures - A richer OrderedTypeFull interface : OrderedType + predicate "le" - Implementations {Nat,N,P,Z,Q}OrderedType.v, also providing "order" tactics - By the way: as suggested by S. Lescuyer, specification of compare is now inductive - GenericMinMax: axiomatisation + properties of min and max out of OrderedTypeFull structures. - MinMax.v, {Z,P,N,Q}minmax.v are specialization of GenericMinMax, with also some domain-specific results, and compatibility layer with already existing results. - Some ML code of plugins had to be adapted, otherwise wrong "eq", "lt" or simimlar constants were found by functions like coq_constant. - Beware of the aliasing problems: for instance eq:=@eq t instead of eq:=@eq M.t in Make_UDT made (r)omega stopped working (Z_as_OT.t instead of Z in statement of Zmax_spec). - Some Morphism declaration are now ambiguous: switch to new syntax anyway. - Misc adaptations of FSets/MSets - Classes/RelationPairs.v: from two relations over A and B, we inspect relations over A*B and their properties in terms of classes. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12461 85f007b7-540e-0410-9357-904b9bb8a0f7 --- theories/Structures/GenericMinMax.v | 507 ++++++++++++++++++++++++++++++++++++ 1 file changed, 507 insertions(+) create mode 100644 theories/Structures/GenericMinMax.v (limited to 'theories/Structures/GenericMinMax.v') diff --git a/theories/Structures/GenericMinMax.v b/theories/Structures/GenericMinMax.v new file mode 100644 index 000000000..ed9c035a1 --- /dev/null +++ b/theories/Structures/GenericMinMax.v @@ -0,0 +1,507 @@ +(***********************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* t -> t. + Parameter max_spec : forall x y, + (lt x y /\ eq (max x y) y) \/ (le y x /\ eq (max x y) x). +End HasMax. + +Module Type HasMin (Import O:OrderedTypeFull). + Parameter Inline min : t -> t -> t. + Parameter min_spec : forall x y, + (lt x y /\ eq (min x y) x) \/ (le y x /\ eq (min x y) y). +End HasMin. + +Module Type HasMinMax (Import O:OrderedTypeFull). + Include Type HasMax O. + Include Type HasMin O. +End HasMinMax. + + +(** ** Any [OrderedTypeFull] can be equipped by [max] and [min] + based on the compare function. *) + +Definition gmax {A} (cmp : A->A->comparison) x y := + match cmp x y with Lt => y | _ => x end. +Definition gmin {A} (cmp : A->A->comparison) x y := + match cmp x y with Gt => y | _ => x end. + +Module GenericMinMax (Import O:OrderedTypeFull) <: HasMinMax O. + + Definition max := gmax O.compare. + Definition min := gmin O.compare. + + Lemma max_spec : forall x y, + (lt x y /\ eq (max x y) y) \/ (le y x /\ eq (max x y) x). + Proof. + intros. rewrite le_lteq. unfold max, gmax. + destruct (compare_spec x y); auto. + Qed. + + Lemma min_spec : forall x y, + (lt x y /\ eq (min x y) x) \/ (le y x /\ eq (min x y) y). + Proof. + intros. rewrite le_lteq. unfold min, gmin. + destruct (compare_spec x y); auto. + Qed. + +End GenericMinMax. + + +(** ** Consequences of the minimalist interface: facts about [max]. *) + +Module MaxProperties (Import O:OrderedTypeFull)(Import M:HasMax O). + Module Import OF := OrderedTypeFullFacts O. + Infix "<" := lt. + Infix "==" := eq (at level 70). + Infix "<=" := le. + +Instance max_compat : Proper (eq==>eq==>eq) max. +Proof. +intros x x' Hx y y' Hy. +assert (H1 := max_spec x y). assert (H2 := max_spec x' y'). +set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'. +rewrite <- Hx, <- Hy in *. +destruct (compare_spec x y); intuition; order. +Qed. + +(** An alias to the [max_spec] of the interface. *) + +Lemma max_spec : forall n m, + (n < m /\ max n m == m) \/ (m <= n /\ max n m == n). +Proof. exact max_spec. Qed. + +(** A more symmetric version of [max_spec], based only on [le]. + Beware that left and right alternatives overlap. *) + +Lemma max_spec_le : forall n m, + (n <= m /\ max n m == m) \/ (m <= n /\ max n m == n). +Proof. + intros. destruct (max_spec n m); [left|right]; intuition; order. +Qed. + +(** Another function satisfying the same specification is equal to [max]. *) + +Lemma max_unicity : forall n m p, + ((n < m /\ p == m) \/ (m <= n /\ p == n)) -> p == max n m. +Proof. + intros. assert (Hm := max_spec n m). + destruct (compare_spec n m); intuition; order. +Qed. + +Lemma max_unicity_ext : forall f, + (forall n m, (n < m /\ f n m == m) \/ (m <= n /\ f n m == n)) -> + (forall n m, f n m == max n m). +Proof. + intros. apply max_unicity; auto. +Qed. + +(** Induction principles for [max]. *) + +Lemma max_case_strong : forall n m (P:t -> Type), + (forall x y, x==y -> P x -> P y) -> + (m<=n -> P n) -> (n<=m -> P m) -> P (max n m). +Proof. +intros n m P Compat Hl Hr. +assert (H:=compare_spec n m). assert (H':=max_spec n m). +destruct (compare n m). +apply (Compat m), Hr; inversion_clear H; intuition; order. +apply (Compat m), Hr; inversion_clear H; intuition; order. +apply (Compat n), Hl; inversion_clear H; intuition; order. +Qed. + +Lemma max_case : forall n m (P:t -> Type), + (forall x y, x == y -> P x -> P y) -> + P n -> P m -> P (max n m). +Proof. + intros. apply max_case_strong; auto. +Defined. + +(** [max] returns one of its arguments. *) + +Lemma max_dec : forall n m, {max n m == n} + {max n m == m}. +Proof. + intros n m. apply max_case; auto. + intros x y H [E|E]; [left|right]; order. +Defined. + +(** [max] commutes with monotone functions. *) + +Lemma max_monotone: forall f, + (Proper (eq ==> eq) f) -> + (Proper (le ==> le) f) -> + forall x y, max (f x) (f y) == f (max x y). +Proof. + intros f Eqf Lef x y. + destruct (M.max_spec x y) as [(H,E)|(H,E)]; rewrite E; + destruct (M.max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. + assert (f x <= f y) by (apply Lef; order). order. + assert (f y <= f x) by (apply Lef; order). order. +Qed. + +(** *** Semi-lattice algebraic properties of [max] *) + +Lemma max_id : forall n, max n n == n. +Proof. + intros. destruct (M.max_spec n n); intuition. +Qed. + +Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p. +Proof. + intros. + destruct (M.max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq; auto. + destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; auto. + destruct (max_spec m p); intuition; order. + destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; auto. + destruct (max_spec m p); intuition; order. +Qed. + +Lemma max_comm : forall n m, max n m == max m n. +Proof. + intros. + destruct (M.max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq; auto. + destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; auto. + order. + destruct (M.max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; auto. + order. +Qed. + +(** *** Least-upper bound properties of [max] *) + +Lemma max_l : forall n m, m <= n -> max n m == n. +Proof. + intros. destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_r : forall n m, n <= m -> max n m == m. +Proof. + intros. destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma le_max_l : forall n m, n <= max n m. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma le_max_r : forall n m, m <= max n m. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m. +Proof. + intros n m p H; destruct (M.max_spec n m); + [right|left]; intuition; order. +Qed. + +Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m. +Proof. + intros. split. apply max_le. + destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m. +Proof. + intros. destruct (M.max_spec n m); intuition; + order || (right; order) || (left; order). +Qed. + +Lemma max_lub_l : forall n m p, max n m <= p -> n <= p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lub_r : forall n m p, max n m <= p -> m <= p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p. +Proof. + intros; destruct (M.max_spec n m); intuition; order. +Qed. + +Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m. +Proof. + intros. + destruct (M.max_spec p n) as [(LT,E)|(LE,E)]; rewrite E. + assert (LE' := le_max_r p m). order. + apply le_max_l. +Qed. + +Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p. +Proof. + intros. rewrite (max_comm n p), (max_comm m p). + auto using max_le_compat_l. +Qed. + +Lemma max_le_compat : forall n m p q, n <= m -> p <= q -> + max n p <= max m q. +Proof. + intros n m p q Hnm Hpq. + assert (LE := max_le_compat_l _ _ m Hpq). + assert (LE' := max_le_compat_r _ _ p Hnm). + order. +Qed. + +End MaxProperties. + + +(** ** Properties concernant [min], then both [min] and [max]. + + To avoid duplication of code, we exploit that [min] can be + seen as a [max] of the reversed order. +*) + +Module MinMaxProperties (Import O:OrderedTypeFull)(Import M:HasMinMax O). + Include MaxProperties O M. + + Module ORev := OrderedTypeRev O. + Module MRev <: HasMax ORev. + Definition max x y := M.min y x. + Definition max_spec x y := M.min_spec y x. + End MRev. + Module MPRev := MaxProperties ORev MRev. + +Instance min_compat : Proper (eq==>eq==>eq) min. +Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed. + +Lemma min_spec : forall n m, + (n < m /\ min n m == n) \/ (m <= n /\ min n m == m). +Proof. exact min_spec. Qed. + +Lemma min_spec_le : forall n m, + (n <= m /\ min n m == n) \/ (m <= n /\ min n m == m). +Proof. intros. exact (MPRev.max_spec_le m n). Qed. + +Lemma min_case_strong : forall n m (P:O.t -> Type), + (forall x y, x == y -> P x -> P y) -> + (m<=n -> P m) -> (n<=m -> P n) -> P (min n m). +Proof. intros. apply (MPRev.max_case_strong m n P); auto. Qed. + +Lemma min_case : forall n m (P:O.t -> Type), + (forall x y, x == y -> P x -> P y) -> + P n -> P m -> P (min n m). +Proof. intros. apply min_case_strong; auto. Defined. + +Lemma min_dec : forall n m, {min n m == n} + {min n m == m}. +Proof. + intros. destruct (MPRev.max_dec m n); [right|left]; assumption. +Defined. + +Lemma min_monotone: forall f, + (Proper (eq ==> eq) f) -> + (Proper (le ==> le) f) -> + forall x y, min (f x) (f y) == f (min x y). +Proof. + intros. apply MPRev.max_monotone; auto. compute in *; eauto. +Qed. + +Lemma min_unicity : forall n m p, + ((n < m /\ p == n) \/ (m <= n /\ p == m)) -> p == min n m. +Proof. intros n m p. apply MPRev.max_unicity. Qed. + +Lemma min_unicity_ext : forall f, + (forall n m, (n < m /\ f n m == n) \/ (m <= n /\ f n m == m)) -> + (forall n m, f n m == min n m). +Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed. + +Lemma min_id : forall n, min n n == n. +Proof. intros. exact (MPRev.max_id n). Qed. + +Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p. +Proof. intros. symmetry; apply MPRev.max_assoc. Qed. + +Lemma min_comm : forall n m, min n m == min m n. +Proof. intros. exact (MPRev.max_comm m n). Qed. + +Lemma min_l : forall n m, n <= m -> min n m == n. +Proof. intros n m. exact (MPRev.max_r m n). Qed. + +Lemma min_r : forall n m, m <= n -> min n m == m. +Proof. intros n m. exact (MPRev.max_l m n). Qed. + +Lemma le_min_r : forall n m, min n m <= m. +Proof. intros. exact (MPRev.le_max_l m n). Qed. + +Lemma le_min_l : forall n m, min n m <= n. +Proof. intros. exact (MPRev.le_max_r m n). Qed. + +Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p. +Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed. + +Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p. +Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed. + +Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p. +Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed. + +Lemma min_glb_l : forall n m p, p <= min n m -> p <= n. +Proof. intros n m. exact (MPRev.max_lub_r m n). Qed. + +Lemma min_glb_r : forall n m p, p <= min n m -> p <= m. +Proof. intros n m. exact (MPRev.max_lub_l m n). Qed. + +Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m. +Proof. intros. apply MPRev.max_lub; auto. Qed. + +Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m. +Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed. + +Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m. +Proof. intros. apply MPRev.max_lub_lt; auto. Qed. + +Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m. +Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed. + +Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m. +Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed. + +Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p. +Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed. + +Lemma min_le_compat : forall n m p q, n <= m -> p <= q -> + min n p <= min m q. +Proof. intros. apply MPRev.max_le_compat; auto. Qed. + + +(** *** Combined properties of min and max *) + +Lemma min_max_absorption : forall n m, max n (min n m) == n. +Proof. + intros. + destruct (M.min_spec n m) as [(C,E)|(C,E)]; rewrite E. + apply max_l. OF.order. + destruct (M.max_spec n m); intuition; OF.order. +Qed. + +Lemma max_min_absorption : forall n m, min n (max n m) == n. +Proof. + intros. + destruct (M.max_spec n m) as [(C,E)|(C,E)]; rewrite E. + destruct (M.min_spec n m) as [(C',E')|(C',E')]; auto. OF.order. + apply min_l; auto. OF.order. +Qed. + +(** Distributivity *) + +Lemma max_min_distr : forall n m p, + max n (min m p) == min (max n m) (max n p). +Proof. + intros. symmetry. apply min_monotone. + eauto with *. + repeat red; intros. apply max_le_compat_l; auto. +Qed. + +Lemma min_max_distr : forall n m p, + min n (max m p) == max (min n m) (min n p). +Proof. + intros. symmetry. apply max_monotone. + eauto with *. + repeat red; intros. apply min_le_compat_l; auto. +Qed. + +(** Modularity *) + +Lemma max_min_modular : forall n m p, + max n (min m (max n p)) == min (max n m) (max n p). +Proof. + intros. rewrite <- max_min_distr. + destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E; auto. + destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'. + rewrite 2 max_l; try OF.order. rewrite min_le_iff; auto. + rewrite 2 max_l; try OF.order. rewrite min_le_iff; auto. +Qed. + +Lemma min_max_modular : forall n m p, + min n (max m (min n p)) == max (min n m) (min n p). +Proof. + intros. rewrite <- min_max_distr. + destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E; auto. + destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'. + rewrite 2 min_l; try OF.order. rewrite max_le_iff; right; OF.order. + rewrite 2 min_l; try OF.order. rewrite max_le_iff; auto. +Qed. + +(** Disassociativity *) + +Lemma max_min_disassoc : forall n m p, + min n (max m p) <= max (min n m) p. +Proof. + intros. rewrite min_max_distr. + auto using max_le_compat_l, le_min_r. +Qed. + +(** Anti-monotonicity swaps the role of [min] and [max] *) + +Lemma max_min_antimonotone : forall f, + Proper (eq==>eq) f -> + Proper (le==>inverse le) f -> + forall x y, max (f x) (f y) == f (min x y). +Proof. + intros f Eqf Lef x y. + destruct (M.min_spec x y) as [(H,E)|(H,E)]; rewrite E; + destruct (M.max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. + assert (f y <= f x) by (apply Lef; OF.order). OF.order. + assert (f x <= f y) by (apply Lef; OF.order). OF.order. +Qed. + + +Lemma min_max_antimonotone : forall f, + Proper (eq==>eq) f -> + Proper (le==>inverse le) f -> + forall x y, min (f x) (f y) == f (max x y). +Proof. + intros f Eqf Lef x y. + destruct (M.max_spec x y) as [(H,E)|(H,E)]; rewrite E; + destruct (M.min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. + assert (f y <= f x) by (apply Lef; OF.order). OF.order. + assert (f x <= f y) by (apply Lef; OF.order). OF.order. +Qed. + +End MinMaxProperties. + + + +(** Some Remaining questions... + +--> Compare with a type-classes version ? + +--> Is max_unicity and max_unicity_ext really convenient to express + that any possible definition of max will in fact be equivalent ? + +--> Is it possible to avoid copy-paste about min even more ? + +--> Can this modular approach be used for more complex things, + in particular div/mod ? + How can we share common parts between nat and Z in this case ? + How to handle different choices (Zdiv vs. ZOdiv) ? + +*) -- cgit v1.2.3