From 7511435a39d70625cde2949ddcc70684525a87e9 Mon Sep 17 00:00:00 2001 From: letouzey Date: Fri, 18 May 2012 10:50:45 +0000 Subject: List + Permutation : more results about nth_error and nth In particular, characterisation of NoDup and Permutation in term of nth_error and nth Some of these results have been suggested last year by Bas Spitters (cf. MathClasses). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15336 85f007b7-540e-0410-9357-904b9bb8a0f7 --- theories/Sorting/PermutEq.v | 4 +- theories/Sorting/PermutSetoid.v | 2 +- theories/Sorting/Permutation.v | 503 +++++++++++++++++++++++++++++++--------- 3 files changed, 391 insertions(+), 118 deletions(-) (limited to 'theories/Sorting') diff --git a/theories/Sorting/PermutEq.v b/theories/Sorting/PermutEq.v index d4e5fba4c..758311955 100644 --- a/theories/Sorting/PermutEq.v +++ b/theories/Sorting/PermutEq.v @@ -12,8 +12,8 @@ Set Implicit Arguments. (** This file is similar to [PermutSetoid], except that the equality used here is Coq usual one instead of a setoid equality. In particular, we can then - prove the equivalence between [List.Permutation] and - [Permutation.permutation]. + prove the equivalence between [Permutation.Permutation] and + [PermutSetoid.permutation]. *) Section Perm. diff --git a/theories/Sorting/PermutSetoid.v b/theories/Sorting/PermutSetoid.v index fa807c15f..6f0d76a62 100644 --- a/theories/Sorting/PermutSetoid.v +++ b/theories/Sorting/PermutSetoid.v @@ -19,7 +19,7 @@ Require Import Omega Relations Multiset SetoidList. The relation between the two relations are in lemma [permutation_Permutation]. - File [PermutEq] concerns Leibniz equality : it shows in particular + File [Permutation] concerns Leibniz equality : it shows in particular that [List.Permutation] and [permutation] are equivalent in this context. *) diff --git a/theories/Sorting/Permutation.v b/theories/Sorting/Permutation.v index 797583d00..c1d25a428 100644 --- a/theories/Sorting/Permutation.v +++ b/theories/Sorting/Permutation.v @@ -13,13 +13,10 @@ (* Adapted in May 2006 by Jean-Marc Notin from initial contents by Laurent Théry (Huffmann contribution, October 2003) *) -Require Import List Setoid. - +Require Import List Setoid Compare_dec Morphisms. +Import ListNotations. (* For notations [] and [a;b;c] *) Set Implicit Arguments. -Local Notation "[ ]" := nil. -Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..). - Section Permutation. Variable A:Type. @@ -28,7 +25,8 @@ Inductive Permutation : list A -> list A -> Prop := | perm_nil: Permutation [] [] | perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l') | perm_swap x y l : Permutation (y::x::l) (x::y::l) -| perm_trans l l' l'' : Permutation l l' -> Permutation l' l'' -> Permutation l l''. +| perm_trans l l' l'' : + Permutation l l' -> Permutation l' l'' -> Permutation l l''. Local Hint Constructors Permutation. @@ -41,7 +39,8 @@ Proof. induction HF; discriminate || auto. Qed. -Theorem Permutation_nil_cons : forall (l : list A) (x : A), ~ Permutation nil (x::l). +Theorem Permutation_nil_cons : forall (l : list A) (x : A), + ~ Permutation nil (x::l). Proof. intros l x HF. apply Permutation_nil in HF; discriminate. @@ -54,13 +53,15 @@ Proof. induction l; constructor. exact IHl. Qed. -Theorem Permutation_sym : forall l l' : list A, Permutation l l' -> Permutation l' l. +Theorem Permutation_sym : forall l l' : list A, + Permutation l l' -> Permutation l' l. Proof. intros l l' Hperm; induction Hperm; auto. apply perm_trans with (l':=l'); assumption. Qed. -Theorem Permutation_trans : forall l l' l'' : list A, Permutation l l' -> Permutation l' l'' -> Permutation l l''. +Theorem Permutation_trans : forall l l' l'' : list A, + Permutation l l' -> Permutation l' l'' -> Permutation l l''. Proof. exact perm_trans. Qed. @@ -83,11 +84,10 @@ Instance Permutation_Equivalence A : Equivalence (@Permutation A) | 10 := { Equivalence_Symmetric := @Permutation_sym A ; Equivalence_Transitive := @Permutation_trans A }. -Add Parametric Morphism A (a:A) : (cons a) - with signature @Permutation A ==> @Permutation A - as Permutation_cons. +Instance Permutation_cons A : + Proper (Logic.eq ==> @Permutation A ==> @Permutation A) (@cons A). Proof. - auto using perm_skip. + repeat red; intros; subst; auto using perm_skip. Qed. Section Permutation_properties. @@ -99,35 +99,48 @@ Implicit Types l m : list A. (** Compatibility with others operations on lists *) -Theorem Permutation_in : forall (l l' : list A) (x : A), Permutation l l' -> In x l -> In x l'. +Theorem Permutation_in : forall (l l' : list A) (x : A), + Permutation l l' -> In x l -> In x l'. Proof. intros l l' x Hperm; induction Hperm; simpl; tauto. Qed. -Lemma Permutation_app_tail : forall (l l' tl : list A), Permutation l l' -> Permutation (l++tl) (l'++tl). +Global Instance Permutation_in' : + Proper (Logic.eq ==> @Permutation A ==> iff) (@In A). +Proof. + repeat red; intros; subst; eauto using Permutation_in. +Qed. + +Lemma Permutation_app_tail : forall (l l' tl : list A), + Permutation l l' -> Permutation (l++tl) (l'++tl). Proof. intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto. eapply Permutation_trans with (l':=l'++tl); trivial. Qed. -Lemma Permutation_app_head : forall (l tl tl' : list A), Permutation tl tl' -> Permutation (l++tl) (l++tl'). +Lemma Permutation_app_head : forall (l tl tl' : list A), + Permutation tl tl' -> Permutation (l++tl) (l++tl'). Proof. - intros l tl tl' Hperm; induction l; [trivial | repeat rewrite <- app_comm_cons; constructor; assumption]. + intros l tl tl' Hperm; induction l; + [trivial | repeat rewrite <- app_comm_cons; constructor; assumption]. Qed. -Theorem Permutation_app : forall (l m l' m' : list A), Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m'). +Theorem Permutation_app : forall (l m l' m' : list A), + Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m'). Proof. - intros l m l' m' Hpermll' Hpermmm'; induction Hpermll' as [|x l l'|x y l|l l' l'']; repeat rewrite <- app_comm_cons; auto. + intros l m l' m' Hpermll' Hpermmm'; + induction Hpermll' as [|x l l'|x y l|l l' l'']; + repeat rewrite <- app_comm_cons; auto. apply Permutation_trans with (l' := (x :: y :: l ++ m)); - [idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial. + [idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial. apply Permutation_trans with (l' := (l' ++ m')); try assumption. apply Permutation_app_tail; assumption. Qed. -Add Parametric Morphism : (@app A) - with signature @Permutation A ==> @Permutation A ==> @Permutation A - as Permutation_app'. - auto using Permutation_app. +Global Instance Permutation_app' : + Proper (@Permutation A ==> @Permutation A ==> @Permutation A) (@app A). +Proof. + repeat red; intros; now apply Permutation_app. Qed. Lemma Permutation_add_inside : forall a (l l' tl tl' : list A), @@ -146,17 +159,18 @@ Theorem Permutation_app_comm : forall (l l' : list A), Permutation (l ++ l') (l' ++ l). Proof. induction l as [|x l]; simpl; intro l'. - rewrite app_nil_r; trivial. rewrite IHl. - rewrite app_comm_cons, Permutation_cons_append. - now rewrite <- app_assoc. + rewrite app_nil_r; trivial. rewrite IHl. + rewrite app_comm_cons, Permutation_cons_append. + now rewrite <- app_assoc. Qed. Local Hint Resolve Permutation_app_comm. Theorem Permutation_cons_app : forall (l l1 l2:list A) a, Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2). -Proof. intros l l1 l2 a H. rewrite H. - rewrite app_comm_cons, Permutation_cons_append. - now rewrite <- app_assoc. +Proof. + intros l l1 l2 a H. rewrite H. + rewrite app_comm_cons, Permutation_cons_append. + now rewrite <- app_assoc. Qed. Local Hint Resolve Permutation_cons_app. @@ -169,18 +183,27 @@ Local Hint Resolve Permutation_middle. Theorem Permutation_rev : forall (l : list A), Permutation l (rev l). Proof. - induction l as [| x l]; simpl; trivial. now rewrite IHl at 1. + induction l as [| x l]; simpl; trivial. now rewrite IHl at 1. Qed. -Add Parametric Morphism : (@rev A) - with signature @Permutation A ==> @Permutation A as Permutation_rev'. -Proof. intros. now do 2 rewrite <- Permutation_rev. Qed. +Global Instance Permutation_rev' : + Proper (@Permutation A ==> @Permutation A) (@rev A). +Proof. + repeat red; intros; now rewrite <- 2 Permutation_rev. +Qed. -Theorem Permutation_length : forall (l l' : list A), Permutation l l' -> length l = length l'. +Theorem Permutation_length : forall (l l' : list A), + Permutation l l' -> length l = length l'. Proof. intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l'). Qed. +Global Instance Permutation_length' : + Proper (@Permutation A ==> Logic.eq) (@length A). +Proof. + repeat red; now apply Permutation_length. +Qed. + Theorem Permutation_ind_bis : forall P : list A -> list A -> Prop, P [] [] -> @@ -204,69 +227,72 @@ Ltac break_list l x l' H := destruct l as [|x l']; simpl in *; injection H; intros; subst; clear H. -Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A), ~ Permutation nil (l++x::l'). +Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A), + ~ Permutation nil (l++x::l'). Proof. - intros l l' x HF. + intros l l' x HF. apply Permutation_nil in HF. destruct l; discriminate. Qed. Theorem Permutation_app_inv : forall (l1 l2 l3 l4:list A) a, Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4). Proof. + intros l1 l2 l3 l4 a; revert l1 l2 l3 l4. set (P l l' := - forall a l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> Permutation (l1++l2) (l3++l4)). + forall l1 l2 l3 l4, l=l1++a::l2 -> l'=l3++a::l4 -> + Permutation (l1++l2) (l3++l4)). cut (forall l l', Permutation l l' -> P l l'). - intros; apply (H _ _ H0 a); auto. - intros; apply (Permutation_ind_bis P); unfold P; clear P; try clear H l l'; simpl; auto. -(* nil *) - intros; destruct l1; simpl in *; discriminate. - (* skip *) - intros x l l' H IH; intros. - break_list l1 b l1' H0; break_list l3 c l3' H1. - auto. - now rewrite H. - now rewrite <- H. - now rewrite (IH a _ _ _ _ eq_refl eq_refl). - (* contradict *) - intros x y l l' Hp IH; intros. - break_list l1 b l1' H; break_list l3 c l3' H0. - auto. - break_list l3' b l3'' H. - auto. - rewrite <- Permutation_middle in Hp. now rewrite Hp. - break_list l1' c l1'' H1. - auto. - rewrite <- Permutation_middle in Hp. now rewrite Hp. - break_list l3' d l3'' H; break_list l1' e l1'' H1. - auto. - rewrite <- Permutation_middle in Hp. rewrite perm_swap. auto. - rewrite perm_swap, Permutation_middle. auto. - now rewrite perm_swap, (IH a _ _ _ _ eq_refl eq_refl). - (*trans*) - intros. - destruct (In_split a l') as (l'1,(l'2,H6)). - apply (Permutation_in a H). - subst l. - apply in_or_app; right; red; auto. - apply perm_trans with (l'1++l'2). - apply (H0 _ _ _ _ _ H3 H6). - apply (H2 _ _ _ _ _ H6 H4). + intros H; intros; eapply H; eauto. + apply (Permutation_ind_bis P); unfold P; clear P. + - (* nil *) + intros; now destruct l1. + - (* skip *) + intros x l l' H IH; intros. + break_list l1 b l1' H0; break_list l3 c l3' H1. + auto. + now rewrite H. + now rewrite <- H. + now rewrite (IH _ _ _ _ eq_refl eq_refl). + - (* swap *) + intros x y l l' Hp IH; intros. + break_list l1 b l1' H; break_list l3 c l3' H0. + auto. + break_list l3' b l3'' H. + auto. + constructor. now rewrite Permutation_middle. + break_list l1' c l1'' H1. + auto. + constructor. now rewrite Permutation_middle. + break_list l3' d l3'' H; break_list l1' e l1'' H1. + auto. + rewrite perm_swap. constructor. now rewrite Permutation_middle. + rewrite perm_swap. constructor. now rewrite Permutation_middle. + now rewrite perm_swap, (IH _ _ _ _ eq_refl eq_refl). + - (*trans*) + intros. + destruct (In_split a l') as (l'1,(l'2,H6)). + rewrite <- H. + subst l. + apply in_or_app; right; red; auto. + apply perm_trans with (l'1++l'2). + apply (H0 _ _ _ _ H3 H6). + apply (H2 _ _ _ _ H6 H4). Qed. -Theorem Permutation_cons_inv : - forall l l' a, Permutation (a::l) (a::l') -> Permutation l l'. +Theorem Permutation_cons_inv l l' a : + Permutation (a::l) (a::l') -> Permutation l l'. Proof. - intros; exact (Permutation_app_inv [] l [] l' a H). + intro H; exact (Permutation_app_inv [] l [] l' a H). Qed. -Theorem Permutation_cons_app_inv : - forall l l1 l2 a, Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2). +Theorem Permutation_cons_app_inv l l1 l2 a : + Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2). Proof. - intros; exact (Permutation_app_inv [] l l1 l2 a H). + intro H; exact (Permutation_app_inv [] l l1 l2 a H). Qed. -Theorem Permutation_app_inv_l : - forall l l1 l2, Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2. +Theorem Permutation_app_inv_l : forall l l1 l2, + Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2. Proof. induction l; simpl; auto. intros. @@ -274,8 +300,8 @@ Proof. apply Permutation_cons_inv with a; auto. Qed. -Theorem Permutation_app_inv_r : - forall l l1 l2, Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2. +Theorem Permutation_app_inv_r : forall l l1 l2, + Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2. Proof. induction l. intros l1 l2; do 2 rewrite app_nil_r; auto. @@ -318,32 +344,72 @@ Proof. apply Permutation_length_2_inv in H as [H|H]; injection H as -> ->; auto. Qed. -Lemma NoDup_Permutation : forall l l', - NoDup l -> NoDup l' -> (forall x:A, In x l <-> In x l') -> Permutation l l'. +Let in_middle l l1 l2 (a:A) : l = l1 ++ a :: l2 -> + forall x, In x l <-> a = x \/ In x (l1++l2). Proof. - induction l. - destruct l'; simpl; intros. - apply perm_nil. - destruct (H1 a) as (_,H2); destruct H2; auto. - intros. - destruct (In_split a l') as (l'1,(l'2,H2)). - destruct (H1 a) as (H2,H3); simpl in *; auto. - subst l'. - apply Permutation_cons_app. - inversion_clear H. - apply IHl; auto. - apply NoDup_remove_1 with a; auto. - intro x; split; intros. - assert (In x (l'1++a::l'2)). - destruct (H1 x); simpl in *; auto. - apply in_or_app; destruct (in_app_or _ _ _ H4); auto. - destruct H5; auto. - subst x; destruct H2; auto. - assert (In x (l'1++a::l'2)). - apply in_or_app; destruct (in_app_or _ _ _ H); simpl; auto. - destruct (H1 x) as (_,H5); destruct H5; auto. - subst x. - destruct (NoDup_remove_2 _ _ _ H0 H). + intros; subst; rewrite !in_app_iff; simpl. tauto. +Qed. + +Lemma NoDup_cardinal_incl (l l' : list A) : NoDup l -> NoDup l' -> + length l = length l' -> incl l l' -> incl l' l. +Proof. + intros N. revert l'. induction N as [|a l Hal Hl IH]. + - destruct l'; now auto. + - intros l' Hl' E H x Hx. + assert (Ha : In a l') by (apply H; simpl; auto). + destruct (in_split _ _ Ha) as (l1 & l2 & H12). clear Ha. + rewrite in_middle in Hx; eauto. + destruct Hx as [Hx|Hx]; [left|right]; auto. + apply (IH (l1++l2)); auto. + * apply NoDup_remove_1 with a; rewrite <- H12; auto. + * apply eq_add_S. + simpl in E; rewrite E, H12, !app_length; simpl; auto with arith. + * intros y Hy. assert (Hy' : In y l') by (apply H; simpl; auto). + rewrite in_middle in Hy'; eauto. + destruct Hy'; auto. subst y; intuition. +Qed. + +Lemma NoDup_Permutation l l' : NoDup l -> NoDup l' -> + (forall x:A, In x l <-> In x l') -> Permutation l l'. +Proof. + intros N. revert l'. induction N as [|a l Hal Hl IH]. + - destruct l'; simpl; auto. + intros Hl' H. exfalso. rewrite (H a); auto. + - intros l' Hl' H. + assert (Ha : In a l') by (apply H; simpl; auto). + destruct (In_split _ _ Ha) as (l1 & l2 & H12). + rewrite H12. + apply Permutation_cons_app. + apply IH; auto. + * apply NoDup_remove_1 with a; rewrite <- H12; auto. + * intro x. split; intros Hx. + + assert (Hx' : In x l') by (apply H; simpl; auto). + rewrite in_middle in Hx'; eauto. + destruct Hx'; auto. subst; intuition. + + assert (Hx' : In x l') by (rewrite (in_middle l1 l2 a); eauto). + rewrite <- H in Hx'. destruct Hx'; auto. + subst. destruct (NoDup_remove_2 _ _ _ Hl' Hx). +Qed. + +Lemma NoDup_Permutation_bis l l' : NoDup l -> NoDup l' -> + length l = length l' -> incl l l' -> Permutation l l'. +Proof. + intros. apply NoDup_Permutation; auto. + split; auto. apply NoDup_cardinal_incl; auto. +Qed. + +Lemma Permutation_NoDup l l' : Permutation l l' -> NoDup l -> NoDup l'. +Proof. + induction 1; auto. + * inversion_clear 1; constructor; eauto using Permutation_in. + * inversion_clear 1 as [|? ? H1 H2]. inversion_clear H2; simpl in *. + constructor. simpl; intuition. constructor; intuition. +Qed. + +Global Instance Permutation_NoDup' : + Proper (@Permutation A ==> iff) (@NoDup A). +Proof. + repeat red; eauto using Permutation_NoDup. Qed. End Permutation_properties. @@ -353,20 +419,227 @@ Section Permutation_map. Variable A B : Type. Variable f : A -> B. -Add Parametric Morphism : (map f) - with signature (@Permutation A) ==> (@Permutation B) as Permutation_map_aux. +Lemma Permutation_map l l' : + Permutation l l' -> Permutation (map f l) (map f l'). Proof. - induction 1; simpl; eauto using Permutation. + induction 1; simpl; eauto. Qed. -Lemma Permutation_map : - forall l l', Permutation l l' -> Permutation (map f l) (map f l'). +Global Instance Permutation_map' : + Proper (@Permutation A ==> @Permutation B) (map f). Proof. - exact Permutation_map_aux_Proper. + exact Permutation_map. Qed. End Permutation_map. +Section Injection. + +Definition injective {A B} (f : A->B) := + forall x y, f x = f y -> x = y. + +Lemma injective_map_NoDup {A B} (f:A->B) (l:list A) : + injective f -> NoDup l -> NoDup (map f l). +Proof. + intros Hf. induction 1 as [|x l Hx Hl IH]; simpl; constructor; trivial. + rewrite in_map_iff. intros (y & Hy & Hy'). apply Hf in Hy. now subst. +Qed. + +Lemma injective_bounded_surjective n f : + injective f -> + (forall x, x < n -> f x < n) -> + (forall y, y < n -> exists x, x < n /\ f x = y). +Proof. + intros Hf H. + set (l := seq 0 n). + assert (P : incl (map f l) l). + { intros x. rewrite in_map_iff. intros (y & <- & Hy'). + unfold l in *. rewrite in_seq in *. simpl in *. + destruct Hy' as (_,Hy'). auto with arith. } + assert (P' : incl l (map f l)). + { unfold l. + apply NoDup_cardinal_incl; auto using injective_map_NoDup, seq_NoDup. + now rewrite map_length. } + intros x Hx. + assert (Hx' : In x l) by (unfold l; rewrite in_seq; auto with arith). + apply P' in Hx'. + rewrite in_map_iff in Hx'. destruct Hx' as (y & Hy & Hy'). + exists y; split; auto. unfold l in *; rewrite in_seq in Hy'. + destruct Hy'; auto with arith. +Qed. + +Lemma nat_bijection_Permutation n f : + injective f -> (forall x, x < n -> f x < n) -> + let l := seq 0 n in Permutation (map f l) l. +Proof. + intros Hf BD. + apply NoDup_Permutation_bis; auto using injective_map_NoDup, seq_NoDup. + * now rewrite map_length. + * intros x. rewrite in_map_iff. intros (y & <- & Hy'). + rewrite in_seq in *. simpl in *. + destruct Hy' as (_,Hy'). auto with arith. +Qed. + +End Injection. + +Section Permutation_alt. +Variable A:Type. +Implicit Type a : A. +Implicit Type l : list A. + +(** Alternative characterization of permutation + via [nth_error] and [nth] *) + +Let adapt f n := + let m := f (S n) in if le_lt_dec m (f 0) then m else pred m. + +Let adapt_injective f : injective f -> injective (adapt f). +Proof. + unfold adapt. intros Hf x y EQ. + destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT']. + - now apply eq_add_S, Hf. + - apply Lt.le_lt_or_eq in LE. + destruct LE as [LT|EQ']; [|now apply Hf in EQ']. + unfold lt in LT. rewrite EQ in LT. + rewrite <- (Lt.S_pred _ _ LT') in LT. + elim (Lt.lt_not_le _ _ LT' LT). + - apply Lt.le_lt_or_eq in LE'. + destruct LE' as [LT'|EQ']; [|now apply Hf in EQ']. + unfold lt in LT'. rewrite <- EQ in LT'. + rewrite <- (Lt.S_pred _ _ LT) in LT'. + elim (Lt.lt_not_le _ _ LT LT'). + - apply eq_add_S, Hf. + now rewrite (Lt.S_pred _ _ LT), (Lt.S_pred _ _ LT'), EQ. +Qed. + +Let adapt_ok a l1 l2 f : injective f -> length l1 = f 0 -> + forall n, nth_error (l1++a::l2) (f (S n)) = nth_error (l1++l2) (adapt f n). +Proof. + unfold adapt. intros Hf E n. + destruct le_lt_dec as [LE|LT]. + - apply Lt.le_lt_or_eq in LE. + destruct LE as [LT|EQ]; [|now apply Hf in EQ]. + rewrite <- E in LT. + rewrite 2 nth_error_app1; auto. + - rewrite (Lt.S_pred _ _ LT) at 1. + rewrite <- E, (Lt.S_pred _ _ LT) in LT. + rewrite 2 nth_error_app2; auto with arith. + rewrite <- Minus.minus_Sn_m; auto with arith. +Qed. + +Lemma Permutation_nth_error l l' : + Permutation l l' <-> + (length l = length l' /\ + exists f:nat->nat, + injective f /\ forall n, nth_error l' n = nth_error l (f n)). +Proof. + split. + { intros P. + split; [now apply Permutation_length|]. + induction P. + - exists (fun n => n). + split; try red; auto. + - destruct IHP as (f & Hf & Hf'). + exists (fun n => match n with O => O | S n => S (f n) end). + split; try red. + * intros [|y] [|z]; simpl; now auto. + * intros [|n]; simpl; auto. + - exists (fun n => match n with 0 => 1 | 1 => 0 | n => n end). + split; try red. + * intros [|[|z]] [|[|t]]; simpl; now auto. + * intros [|[|n]]; simpl; auto. + - destruct IHP1 as (f & Hf & Hf'). + destruct IHP2 as (g & Hg & Hg'). + exists (fun n => f (g n)). + split; try red. + * auto. + * intros n. rewrite <- Hf'; auto. } + { revert l. induction l'. + - intros [|l] (E & _); now auto. + - intros l (E & f & Hf & Hf'). + simpl in E. + assert (Ha : nth_error l (f 0) = Some a) + by (symmetry; apply (Hf' 0)). + destruct (nth_error_split l (f 0) Ha) as (l1 & l2 & L12 & L1). + rewrite L12. rewrite <- Permutation_middle. constructor. + apply IHl'; split; [|exists (adapt f); split]. + * revert E. rewrite L12, !app_length. simpl. + rewrite <- plus_n_Sm. now injection 1. + * now apply adapt_injective. + * intro n. rewrite <- (adapt_ok a), <- L12; auto. + apply (Hf' (S n)). } +Qed. + +Lemma Permutation_nth_error_bis l l' : + Permutation l l' <-> + exists f:nat->nat, + injective f /\ + (forall n, n < length l -> f n < length l) /\ + (forall n, nth_error l' n = nth_error l (f n)). +Proof. + rewrite Permutation_nth_error; split. + - intros (E & f & Hf & Hf'). + exists f. do 2 (split; trivial). + intros n Hn. + destruct (Lt.le_or_lt (length l) (f n)) as [LE|LT]; trivial. + rewrite <- nth_error_None, <- Hf', nth_error_None, <- E in LE. + elim (Lt.lt_not_le _ _ Hn LE). + - intros (f & Hf & Hf2 & Hf3); split; [|exists f; auto]. + assert (H : length l' <= length l') by auto with arith. + rewrite <- nth_error_None, Hf3, nth_error_None in H. + destruct (Lt.le_or_lt (length l) (length l')) as [LE|LT]; + [|apply Hf2 in LT; elim (Lt.lt_not_le _ _ LT H)]. + apply Lt.le_lt_or_eq in LE. destruct LE as [LT|EQ]; trivial. + rewrite <- nth_error_Some, Hf3, nth_error_Some in LT. + destruct (injective_bounded_surjective Hf Hf2 LT) as (y & Hy & Hy'). + apply Hf in Hy'. subst y. elim (Lt.lt_irrefl _ Hy). +Qed. + +Lemma Permutation_nth l l' d : + Permutation l l' <-> + (let n := length l in + length l' = n /\ + exists f:nat->nat, + (forall x, x < n -> f x < n) /\ + (forall x y, x < n -> y < n -> f x = f y -> x = y) /\ + (forall x, x < n -> nth x l' d = nth (f x) l d)). +Proof. + split. + - intros H. + assert (E := Permutation_length H). + split; auto. + apply Permutation_nth_error_bis in H. + destruct H as (f & Hf & Hf2 & Hf3). + exists f. split; [|split]; auto. + intros n Hn. rewrite <- 2 nth_default_eq. unfold nth_default. + now rewrite Hf3. + - intros (E & f & Hf1 & Hf2 & Hf3). + rewrite Permutation_nth_error. + split; auto. + exists (fun n => if le_lt_dec (length l) n then n else f n). + split. + * intros x y. + destruct le_lt_dec as [LE|LT]; + destruct le_lt_dec as [LE'|LT']; auto. + + apply Hf1 in LT'. intros ->. + elim (Lt.lt_irrefl (f y)). eapply Lt.lt_le_trans; eauto. + + apply Hf1 in LT. intros <-. + elim (Lt.lt_irrefl (f x)). eapply Lt.lt_le_trans; eauto. + * intros n. + destruct le_lt_dec as [LE|LT]. + + assert (LE' : length l' <= n) by (now rewrite E). + rewrite <- nth_error_None in LE, LE'. congruence. + + assert (LT' : n < length l') by (now rewrite E). + specialize (Hf3 n LT). rewrite <- 2 nth_default_eq in Hf3. + unfold nth_default in Hf3. + apply Hf1 in LT. + rewrite <- nth_error_Some in LT, LT'. + do 2 destruct nth_error; congruence. +Qed. + +End Permutation_alt. + (* begin hide *) Notation Permutation_app_swap := Permutation_app_comm (only parsing). -(* end hide *) \ No newline at end of file +Notation Permutation_map_aux_Proper := Permutation_map' (only parsing). +(* end hide *) -- cgit v1.2.3