From 3675bac6c38e0a26516e434be08bc100865b339b Mon Sep 17 00:00:00 2001 From: barras Date: Mon, 15 Dec 2003 19:48:24 +0000 Subject: modif existentielle (exists | --> exists ,) + bug d'affichage des pt fixes git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@5099 85f007b7-540e-0410-9357-904b9bb8a0f7 --- theories/Sets/Cpo.v | 12 ++++++------ theories/Sets/Finite_sets.v | 6 +++--- theories/Sets/Finite_sets_facts.v | 2 +- theories/Sets/Image.v | 12 ++++++------ theories/Sets/Infinite_sets.v | 20 ++++++++++---------- theories/Sets/Integers.v | 4 ++-- theories/Sets/Partial_Order.v | 2 +- theories/Sets/Powerset_Classical_facts.v | 6 +++--- theories/Sets/Powerset_facts.v | 2 +- theories/Sets/Relations_2_facts.v | 6 +++--- theories/Sets/Relations_3.v | 2 +- 11 files changed, 37 insertions(+), 37 deletions(-) (limited to 'theories/Sets') diff --git a/theories/Sets/Cpo.v b/theories/Sets/Cpo.v index 0d77c0617..59f8fb2c8 100755 --- a/theories/Sets/Cpo.v +++ b/theories/Sets/Cpo.v @@ -67,7 +67,7 @@ Inductive Totally_ordered (B:Ensemble U) : Prop := Definition Compatible : Relation U := fun x y:U => In U C x -> - In U C y -> exists z : _ | In U C z /\ Upper_Bound (Couple U x y) z. + In U C y -> exists z : _, In U C z /\ Upper_Bound (Couple U x y) z. Inductive Directed (X:Ensemble U) : Prop := Definition_of_Directed : @@ -75,21 +75,21 @@ Inductive Directed (X:Ensemble U) : Prop := Inhabited U X -> (forall x1 x2:U, Included U (Couple U x1 x2) X -> - exists x3 : _ | In U X x3 /\ Upper_Bound (Couple U x1 x2) x3) -> + exists x3 : _, In U X x3 /\ Upper_Bound (Couple U x1 x2) x3) -> Directed X. Inductive Complete : Prop := Definition_of_Complete : - ( exists bot : _ | Bottom bot) -> - (forall X:Ensemble U, Directed X -> exists bsup : _ | Lub X bsup) -> + (exists bot : _, Bottom bot) -> + (forall X:Ensemble U, Directed X -> exists bsup : _, Lub X bsup) -> Complete. Inductive Conditionally_complete : Prop := Definition_of_Conditionally_complete : (forall X:Ensemble U, Included U X C -> - ( exists maj : _ | Upper_Bound X maj) -> - exists bsup : _ | Lub X bsup) -> Conditionally_complete. + (exists maj : _, Upper_Bound X maj) -> + exists bsup : _, Lub X bsup) -> Conditionally_complete. End Bounds. Hint Resolve Totally_ordered_definition Upper_Bound_definition Lower_Bound_definition Lub_definition Glb_definition Bottom_definition diff --git a/theories/Sets/Finite_sets.v b/theories/Sets/Finite_sets.v index 28b2d6fb9..dce4c64e8 100755 --- a/theories/Sets/Finite_sets.v +++ b/theories/Sets/Finite_sets.v @@ -59,8 +59,8 @@ Lemma cardinal_invert : match p with | O => X = Empty_set U | S n => - exists A : _ - | ( exists x : _ | X = Add U A x /\ ~ In U A x /\ cardinal U A n) + exists A : _, + (exists x : _, X = Add U A x /\ ~ In U A x /\ cardinal U A n) end. Proof. induction 1; simpl in |- *; auto. @@ -78,4 +78,4 @@ Proof. intros X p C; elim C; simpl in |- *; trivial with sets. Qed. -End Ensembles_finis_facts. \ No newline at end of file +End Ensembles_finis_facts. diff --git a/theories/Sets/Finite_sets_facts.v b/theories/Sets/Finite_sets_facts.v index 2849bce6c..f394b2e5a 100755 --- a/theories/Sets/Finite_sets_facts.v +++ b/theories/Sets/Finite_sets_facts.v @@ -40,7 +40,7 @@ Section Finite_sets_facts. Variable U : Type. Lemma finite_cardinal : - forall X:Ensemble U, Finite U X -> exists n : nat | cardinal U X n. + forall X:Ensemble U, Finite U X -> exists n : nat, cardinal U X n. Proof. induction 1 as [| A _ [n H]]. exists 0; auto with sets. diff --git a/theories/Sets/Image.v b/theories/Sets/Image.v index 85b83d3ab..fd1c90b90 100755 --- a/theories/Sets/Image.v +++ b/theories/Sets/Image.v @@ -93,7 +93,7 @@ Hint Resolve finite_image. Lemma Im_inv : forall (X:Ensemble U) (f:U -> V) (y:V), - In _ (Im X f) y -> exists x : U | In _ X x /\ f x = y. + In _ (Im X f) y -> exists x : U, In _ X x /\ f x = y. Proof. intros X f y H'; elim H'. intros x H'0 y0 H'1; rewrite H'1. @@ -104,14 +104,14 @@ Definition injective (f:U -> V) := forall x y:U, f x = f y -> x = y. Lemma not_injective_elim : forall f:U -> V, - ~ injective f -> exists x : _ | ( exists y : _ | f x = f y /\ x <> y). + ~ injective f -> exists x : _, (exists y : _, f x = f y /\ x <> y). Proof. unfold injective in |- *; intros f H. -cut ( exists x : _ | ~ (forall y:U, f x = f y -> x = y)). +cut (exists x : _, ~ (forall y:U, f x = f y -> x = y)). 2: apply not_all_ex_not with (P := fun x:U => forall y:U, f x = f y -> x = y); trivial with sets. destruct 1 as [x C]; exists x. -cut ( exists y : _ | ~ (f x = f y -> x = y)). +cut (exists y : _, ~ (f x = f y -> x = y)). 2: apply not_all_ex_not with (P := fun y:U => f x = f y -> x = y); trivial with sets. destruct 1 as [y D]; exists y. @@ -120,7 +120,7 @@ Qed. Lemma cardinal_Im_intro : forall (A:Ensemble U) (f:U -> V) (n:nat), - cardinal _ A n -> exists p : nat | cardinal _ (Im A f) p. + cardinal _ A n -> exists p : nat, cardinal _ (Im A f) p. Proof. intros. apply finite_cardinal; apply finite_image. @@ -196,7 +196,7 @@ Lemma Pigeonhole_principle : cardinal _ A n -> forall n':nat, cardinal _ (Im A f) n' -> - n' < n -> exists x : _ | ( exists y : _ | f x = f y /\ x <> y). + n' < n -> exists x : _, (exists y : _, f x = f y /\ x <> y). Proof. intros; apply not_injective_elim. apply Pigeonhole with A n n'; trivial with sets. diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v index 20ec73fa6..d401b86c1 100755 --- a/theories/Sets/Infinite_sets.v +++ b/theories/Sets/Infinite_sets.v @@ -67,7 +67,7 @@ Lemma approximants_grow : ~ Finite U A -> forall n:nat, cardinal U X n -> - Included U X A -> exists Y : _ | cardinal U Y (S n) /\ Included U Y A. + Included U X A -> exists Y : _, cardinal U Y (S n) /\ Included U Y A. Proof. intros A X H' n H'0; elim H'0; auto with sets. intro H'1. @@ -108,12 +108,12 @@ Lemma approximants_grow' : forall n:nat, cardinal U X n -> Approximant U A X -> - exists Y : _ | cardinal U Y (S n) /\ Approximant U A Y. + exists Y : _, cardinal U Y (S n) /\ Approximant U A Y. Proof. intros A X H' n H'0 H'1; try assumption. elim H'1. intros H'2 H'3. -elimtype ( exists Y : _ | cardinal U Y (S n) /\ Included U Y A). +elimtype (exists Y : _, cardinal U Y (S n) /\ Included U Y A). intros x H'4; elim H'4; intros H'5 H'6; try exact H'5; clear H'4. exists x; auto with sets. split; [ auto with sets | idtac ]. @@ -125,7 +125,7 @@ Qed. Lemma approximant_can_be_any_size : forall A X:Ensemble U, ~ Finite U A -> - forall n:nat, exists Y : _ | cardinal U Y n /\ Approximant U A Y. + forall n:nat, exists Y : _, cardinal U Y n /\ Approximant U A Y. Proof. intros A H' H'0 n; elim n. exists (Empty_set U); auto with sets. @@ -140,8 +140,8 @@ Theorem Image_set_continuous : forall (A:Ensemble U) (f:U -> V) (X:Ensemble V), Finite V X -> Included V X (Im U V A f) -> - exists n : _ - | ( exists Y : _ | (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X). + exists n : _, + (exists Y : _, (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X). Proof. intros A f X H'; elim H'. intro H'0; exists 0. @@ -183,12 +183,12 @@ Qed. Theorem Image_set_continuous' : forall (A:Ensemble U) (f:U -> V) (X:Ensemble V), Approximant V (Im U V A f) X -> - exists Y : _ | Approximant U A Y /\ Im U V Y f = X. + exists Y : _, Approximant U A Y /\ Im U V Y f = X. Proof. intros A f X H'; try assumption. cut - ( exists n : _ - | ( exists Y : _ | (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X)). + (exists n : _, + (exists Y : _, (cardinal U Y n /\ Included U Y A) /\ Im U V Y f = X)). intro H'0; elim H'0; intros n E; elim E; clear H'0. intros x H'0; try assumption. elim H'0; intros H'1 H'2; elim H'1; intros H'3 H'4; try exact H'3; @@ -241,4 +241,4 @@ red in |- *; intro H'2. elim (Pigeonhole_bis A f); auto with sets. Qed. -End Infinite_sets. \ No newline at end of file +End Infinite_sets. diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v index 7f8e1695a..c9121032d 100755 --- a/theories/Sets/Integers.v +++ b/theories/Sets/Integers.v @@ -99,7 +99,7 @@ Hint Resolve le_total_order. Lemma Finite_subset_has_lub : forall X:Ensemble nat, - Finite nat X -> exists m : nat | Upper_Bound nat nat_po X m. + Finite nat X -> exists m : nat, Upper_Bound nat nat_po X m. Proof. intros X H'; elim H'. exists 0. @@ -138,7 +138,7 @@ intros x1 H'1; elim H'1; auto with sets arith. Qed. Lemma Integers_has_no_ub : - ~ ( exists m : nat | Upper_Bound nat nat_po Integers m). + ~ (exists m : nat, Upper_Bound nat nat_po Integers m). Proof. red in |- *; intro H'; elim H'. intros x H'0. diff --git a/theories/Sets/Partial_Order.v b/theories/Sets/Partial_Order.v index 5ef6bc9b0..15fc690dd 100755 --- a/theories/Sets/Partial_Order.v +++ b/theories/Sets/Partial_Order.v @@ -48,7 +48,7 @@ Definition Strict_Rel_of : Rel := fun x y:U => Rel_of p x y /\ x <> y. Inductive covers (y x:U) : Prop := Definition_of_covers : Strict_Rel_of x y -> - ~ ( exists z : _ | Strict_Rel_of x z /\ Strict_Rel_of z y) -> + ~ (exists z : _, Strict_Rel_of x z /\ Strict_Rel_of z y) -> covers y x. End Partial_orders. diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v index 988bbd25a..71ec5b078 100755 --- a/theories/Sets/Powerset_Classical_facts.v +++ b/theories/Sets/Powerset_Classical_facts.v @@ -177,7 +177,7 @@ Qed. Lemma Included_Add : forall (X A:Ensemble U) (x:U), Included U X (Add U A x) -> - Included U X A \/ ( exists A' : _ | X = Add U A' x /\ Included U A' A). + Included U X A \/ (exists A' : _, X = Add U A' x /\ Included U A' A). Proof. intros X A x H'0; try assumption. elim (classic (In U X x)). @@ -267,7 +267,7 @@ Theorem covers_Add : Included U a A -> Included U a' A -> covers (Ensemble U) (Power_set_PO U A) a' a -> - exists x : _ | a' = Add U a x /\ In U A x /\ ~ In U a x. + exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x. Proof. intros A a a' H' H'0 H'1; try assumption. elim (setcover_inv A a a'); auto with sets. @@ -299,7 +299,7 @@ Theorem covers_is_Add : Included U a A -> Included U a' A -> (covers (Ensemble U) (Power_set_PO U A) a' a <-> - ( exists x : _ | a' = Add U a x /\ In U A x /\ ~ In U a x)). + (exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x)). Proof. intros A a a' H' H'0; split; intro K. apply covers_Add with (A := A); auto with sets. diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v index c587744a3..91018f05e 100755 --- a/theories/Sets/Powerset_facts.v +++ b/theories/Sets/Powerset_facts.v @@ -254,7 +254,7 @@ Qed. Lemma setcover_intro : forall (U:Type) (A x y:Ensemble U), Strict_Included U x y -> - ~ ( exists z : _ | Strict_Included U x z /\ Strict_Included U z y) -> + ~ (exists z : _, Strict_Included U x z /\ Strict_Included U z y) -> covers (Ensemble U) (Power_set_PO U A) y x. Proof. intros; apply Definition_of_covers; auto with sets. diff --git a/theories/Sets/Relations_2_facts.v b/theories/Sets/Relations_2_facts.v index 4fda8d8e9..2a0aaf98b 100755 --- a/theories/Sets/Relations_2_facts.v +++ b/theories/Sets/Relations_2_facts.v @@ -67,7 +67,7 @@ Qed. Theorem Rstar_cases : forall (U:Type) (R:Relation U) (x y:U), - Rstar U R x y -> x = y \/ ( exists u : _ | R x u /\ Rstar U R u y). + Rstar U R x y -> x = y \/ (exists u : _, R x u /\ Rstar U R u y). Proof. intros U R x y H'; elim H'; auto with sets. intros x0 y0 z H'0 H'1 H'2; right; exists y0; auto with sets. @@ -116,7 +116,7 @@ Qed. Theorem RstarRplus_RRstar : forall (U:Type) (R:Relation U) (x y z:U), - Rstar U R x y -> Rplus U R y z -> exists u : _ | R x u /\ Rstar U R u z. + Rstar U R x y -> Rplus U R y z -> exists u : _, R x u /\ Rstar U R u z. Proof. generalize Rstar_contains_Rplus; intro T; red in T. generalize Rstar_transitive; intro T1; red in T1. @@ -134,7 +134,7 @@ Theorem Lemma1 : Strongly_confluent U R -> forall x b:U, Rstar U R x b -> - forall a:U, R x a -> exists z : _ | Rstar U R a z /\ R b z. + forall a:U, R x a -> exists z : _, Rstar U R a z /\ R b z. Proof. intros U R H' x b H'0; elim H'0. intros x0 a H'1; exists a; auto with sets. diff --git a/theories/Sets/Relations_3.v b/theories/Sets/Relations_3.v index 1fe689002..d84884d41 100755 --- a/theories/Sets/Relations_3.v +++ b/theories/Sets/Relations_3.v @@ -34,7 +34,7 @@ Section Relations_3. Variable R : Relation U. Definition coherent (x y:U) : Prop := - exists z : _ | Rstar U R x z /\ Rstar U R y z. + exists z : _, Rstar U R x z /\ Rstar U R y z. Definition locally_confluent (x:U) : Prop := forall y z:U, R x y -> R x z -> coherent y z. -- cgit v1.2.3