From 61ccbc81a2f3b4662ed4a2bad9d07d2003dda3a2 Mon Sep 17 00:00:00 2001 From: glondu Date: Thu, 17 Sep 2009 15:58:14 +0000 Subject: Delete trailing whitespaces in all *.{v,ml*} files git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7 --- theories/Reals/Cos_rel.v | 250 +++++++++++++++++++++++------------------------ 1 file changed, 125 insertions(+), 125 deletions(-) (limited to 'theories/Reals/Cos_rel.v') diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v index 56423f337..7a893c53c 100644 --- a/theories/Reals/Cos_rel.v +++ b/theories/Reals/Cos_rel.v @@ -5,7 +5,7 @@ (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - + (*i $Id$ i*) Require Import Rbase. @@ -15,15 +15,15 @@ Require Import Rtrigo_def. Open Local Scope R_scope. Definition A1 (x:R) (N:nat) : R := - sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) N. - + sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) N. + Definition B1 (x:R) (N:nat) : R := sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1)) - N. - + N. + Definition C1 (x y:R) (N:nat) : R := - sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * (x + y) ^ (2 * k)) N. - + sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * (x + y) ^ (2 * k)) N. + Definition Reste1 (x y:R) (N:nat) : R := sum_f_R0 (fun k:nat => @@ -50,7 +50,7 @@ Definition Reste (x y:R) (N:nat) : R := Reste2 x y N - Reste1 x y (S N). Theorem cos_plus_form : forall (x y:R) (n:nat), (0 < n)%nat -> - A1 x (S n) * A1 y (S n) - B1 x n * B1 y n + Reste x y n = C1 x y (S n). + A1 x (S n) * A1 y (S n) - B1 x n * B1 y n + Reste x y n = C1 x y (S n). intros. unfold A1, B1 in |- *. rewrite @@ -244,152 +244,152 @@ apply INR_fact_neq_0. apply INR_fact_neq_0. unfold Reste2 in |- *; apply sum_eq; intros. apply sum_eq; intros. -unfold Rdiv in |- *; ring. +unfold Rdiv in |- *; ring. unfold Reste1 in |- *; apply sum_eq; intros. apply sum_eq; intros. unfold Rdiv in |- *; ring. apply lt_O_Sn. Qed. -Lemma pow_sqr : forall (x:R) (i:nat), x ^ (2 * i) = (x * x) ^ i. -intros. +Lemma pow_sqr : forall (x:R) (i:nat), x ^ (2 * i) = (x * x) ^ i. +intros. assert (H := pow_Rsqr x i). unfold Rsqr in H; exact H. -Qed. - -Lemma A1_cvg : forall x:R, Un_cv (A1 x) (cos x). -intro. -assert (H := exist_cos (x * x)). -elim H; intros. -assert (p_i := p). -unfold cos_in in p. -unfold cos_n, infinite_sum in p. -unfold R_dist in p. -cut (cos x = x0). -intro. -rewrite H0. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. -elim (p eps H1); intros. -exists x1; intros. -unfold A1 in |- *. +Qed. + +Lemma A1_cvg : forall x:R, Un_cv (A1 x) (cos x). +intro. +assert (H := exist_cos (x * x)). +elim H; intros. +assert (p_i := p). +unfold cos_in in p. +unfold cos_n, infinite_sum in p. +unfold R_dist in p. +cut (cos x = x0). +intro. +rewrite H0. +unfold Un_cv in |- *; unfold R_dist in |- *; intros. +elim (p eps H1); intros. +exists x1; intros. +unfold A1 in |- *. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * x ^ (2 * k)) n) with - (sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * (x * x) ^ i) n). -apply H2; assumption. -apply sum_eq. -intros. -replace ((x * x) ^ i) with (x ^ (2 * i)). -reflexivity. -apply pow_sqr. -unfold cos in |- *. -case (exist_cos (Rsqr x)). -unfold Rsqr in |- *; intros. -unfold cos_in in p_i. -unfold cos_in in c. -apply uniqueness_sum with (fun i:nat => cos_n i * (x * x) ^ i); assumption. -Qed. - -Lemma C1_cvg : forall x y:R, Un_cv (C1 x y) (cos (x + y)). -intros. -assert (H := exist_cos ((x + y) * (x + y))). -elim H; intros. -assert (p_i := p). -unfold cos_in in p. -unfold cos_n, infinite_sum in p. -unfold R_dist in p. -cut (cos (x + y) = x0). -intro. -rewrite H0. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. -elim (p eps H1); intros. -exists x1; intros. -unfold C1 in |- *. + (sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * (x * x) ^ i) n). +apply H2; assumption. +apply sum_eq. +intros. +replace ((x * x) ^ i) with (x ^ (2 * i)). +reflexivity. +apply pow_sqr. +unfold cos in |- *. +case (exist_cos (Rsqr x)). +unfold Rsqr in |- *; intros. +unfold cos_in in p_i. +unfold cos_in in c. +apply uniqueness_sum with (fun i:nat => cos_n i * (x * x) ^ i); assumption. +Qed. + +Lemma C1_cvg : forall x y:R, Un_cv (C1 x y) (cos (x + y)). +intros. +assert (H := exist_cos ((x + y) * (x + y))). +elim H; intros. +assert (p_i := p). +unfold cos_in in p. +unfold cos_n, infinite_sum in p. +unfold R_dist in p. +cut (cos (x + y) = x0). +intro. +rewrite H0. +unfold Un_cv in |- *; unfold R_dist in |- *; intros. +elim (p eps H1); intros. +exists x1; intros. +unfold C1 in |- *. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k)) * (x + y) ^ (2 * k)) n) with (sum_f_R0 - (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * ((x + y) * (x + y)) ^ i) n). -apply H2; assumption. -apply sum_eq. -intros. -replace (((x + y) * (x + y)) ^ i) with ((x + y) ^ (2 * i)). -reflexivity. -apply pow_sqr. -unfold cos in |- *. -case (exist_cos (Rsqr (x + y))). -unfold Rsqr in |- *; intros. -unfold cos_in in p_i. -unfold cos_in in c. + (fun i:nat => (-1) ^ i / INR (fact (2 * i)) * ((x + y) * (x + y)) ^ i) n). +apply H2; assumption. +apply sum_eq. +intros. +replace (((x + y) * (x + y)) ^ i) with ((x + y) ^ (2 * i)). +reflexivity. +apply pow_sqr. +unfold cos in |- *. +case (exist_cos (Rsqr (x + y))). +unfold Rsqr in |- *; intros. +unfold cos_in in p_i. +unfold cos_in in c. apply uniqueness_sum with (fun i:nat => cos_n i * ((x + y) * (x + y)) ^ i); - assumption. -Qed. - -Lemma B1_cvg : forall x:R, Un_cv (B1 x) (sin x). -intro. -case (Req_dec x 0); intro. -rewrite H. -rewrite sin_0. -unfold B1 in |- *. -unfold Un_cv in |- *; unfold R_dist in |- *; intros; exists 0%nat; intros. + assumption. +Qed. + +Lemma B1_cvg : forall x:R, Un_cv (B1 x) (sin x). +intro. +case (Req_dec x 0); intro. +rewrite H. +rewrite sin_0. +unfold B1 in |- *. +unfold Un_cv in |- *; unfold R_dist in |- *; intros; exists 0%nat; intros. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k + 1)) - n) with 0. -unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. -induction n as [| n Hrecn]. -simpl in |- *; ring. -rewrite tech5; rewrite <- Hrecn. -simpl in |- *; ring. -unfold ge in |- *; apply le_O_n. -assert (H0 := exist_sin (x * x)). -elim H0; intros. -assert (p_i := p). -unfold sin_in in p. -unfold sin_n, infinite_sum in p. -unfold R_dist in p. -cut (sin x = x * x0). -intro. -rewrite H1. -unfold Un_cv in |- *; unfold R_dist in |- *; intros. + n) with 0. +unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. +induction n as [| n Hrecn]. +simpl in |- *; ring. +rewrite tech5; rewrite <- Hrecn. +simpl in |- *; ring. +unfold ge in |- *; apply le_O_n. +assert (H0 := exist_sin (x * x)). +elim H0; intros. +assert (p_i := p). +unfold sin_in in p. +unfold sin_n, infinite_sum in p. +unfold R_dist in p. +cut (sin x = x * x0). +intro. +rewrite H1. +unfold Un_cv in |- *; unfold R_dist in |- *; intros. cut (0 < eps / Rabs x); [ intro | unfold Rdiv in |- *; apply Rmult_lt_0_compat; - [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ] ]. -elim (p (eps / Rabs x) H3); intros. -exists x1; intros. -unfold B1 in |- *. + [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ] ]. +elim (p (eps / Rabs x) H3); intros. +exists x1; intros. +unfold B1 in |- *. replace (sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * x ^ (2 * k + 1)) n) with (x * - sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * (x * x) ^ i) n). + sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * (x * x) ^ i) n). replace (x * sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * (x * x) ^ i) n - x * x0) with (x * (sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * (x * x) ^ i) n - - x0)); [ idtac | ring ]. -rewrite Rabs_mult. -apply Rmult_lt_reg_l with (/ Rabs x). -apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. -rewrite <- Rmult_assoc. -rewrite <- Rinv_l_sym. + x0)); [ idtac | ring ]. +rewrite Rabs_mult. +apply Rmult_lt_reg_l with (/ Rabs x). +apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption. +rewrite <- Rmult_assoc. +rewrite <- Rinv_l_sym. rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H4; apply H4; - assumption. -apply Rabs_no_R0; assumption. -rewrite scal_sum. -apply sum_eq. -intros. -rewrite pow_add. -rewrite pow_sqr. -simpl in |- *. -ring. -unfold sin in |- *. -case (exist_sin (Rsqr x)). -unfold Rsqr in |- *; intros. -unfold sin_in in p_i. -unfold sin_in in s. + assumption. +apply Rabs_no_R0; assumption. +rewrite scal_sum. +apply sum_eq. +intros. +rewrite pow_add. +rewrite pow_sqr. +simpl in |- *. +ring. +unfold sin in |- *. +case (exist_sin (Rsqr x)). +unfold Rsqr in |- *; intros. +unfold sin_in in p_i. +unfold sin_in in s. assert - (H1 := uniqueness_sum (fun i:nat => sin_n i * (x * x) ^ i) x0 x1 p_i s). -rewrite H1; reflexivity. -Qed. + (H1 := uniqueness_sum (fun i:nat => sin_n i * (x * x) ^ i) x0 x1 p_i s). +rewrite H1; reflexivity. +Qed. -- cgit v1.2.3