From f640bcbe834cef3559118a093f1a905cacdccc2f Mon Sep 17 00:00:00 2001 From: Pierre Boutillier Date: Mon, 8 Sep 2014 16:57:51 +0200 Subject: argument flip of Cyclic31.nshiftr and Cyclic31.nshiftl --- theories/Numbers/Cyclic/Int31/Cyclic31.v | 98 ++++++++++++++++---------------- 1 file changed, 49 insertions(+), 49 deletions(-) (limited to 'theories/Numbers') diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v index f6669d284..1b835de3e 100644 --- a/theories/Numbers/Cyclic/Int31/Cyclic31.v +++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v @@ -75,34 +75,34 @@ Section Basics. (** * Iterated shift to the right *) - Definition nshiftr n x := iter_nat n _ shiftr x. + Definition nshiftr x := nat_rect _ x (fun _ => shiftr). Lemma nshiftr_S : - forall n x, nshiftr (S n) x = shiftr (nshiftr n x). + forall n x, nshiftr x (S n) = shiftr (nshiftr x n). Proof. reflexivity. Qed. Lemma nshiftr_S_tail : - forall n x, nshiftr (S n) x = nshiftr n (shiftr x). + forall n x, nshiftr x (S n) = nshiftr (shiftr x) n. Proof. intros n; elim n; simpl; auto. intros; now f_equal. Qed. - Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0. + Lemma nshiftr_n_0 : forall n, nshiftr 0 n = 0. Proof. induction n; simpl; auto. rewrite IHn; auto. Qed. - Lemma nshiftr_size : forall x, nshiftr size x = 0. + Lemma nshiftr_size : forall x, nshiftr x size = 0. Proof. destruct x; simpl; auto. Qed. Lemma nshiftr_above_size : forall k x, size<=k -> - nshiftr k x = 0. + nshiftr x k = 0. Proof. intros. replace k with ((k-size)+size)%nat by omega. @@ -113,33 +113,33 @@ Section Basics. (** * Iterated shift to the left *) - Definition nshiftl n x := iter_nat n _ shiftl x. + Definition nshiftl x := nat_rect _ x (fun _ => shiftl). Lemma nshiftl_S : - forall n x, nshiftl (S n) x = shiftl (nshiftl n x). + forall n x, nshiftl x (S n) = shiftl (nshiftl x n). Proof. reflexivity. Qed. Lemma nshiftl_S_tail : - forall n x, nshiftl (S n) x = nshiftl n (shiftl x). - Proof. + forall n x, nshiftl x (S n) = nshiftl (shiftl x) n. + Proof. intros n; elim n; simpl; intros; now f_equal. Qed. - Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0. + Lemma nshiftl_n_0 : forall n, nshiftl 0 n = 0. Proof. induction n; simpl; auto. rewrite IHn; auto. Qed. - Lemma nshiftl_size : forall x, nshiftl size x = 0. + Lemma nshiftl_size : forall x, nshiftl x size = 0. Proof. destruct x; simpl; auto. Qed. Lemma nshiftl_above_size : forall k x, size<=k -> - nshiftl k x = 0. + nshiftl x k = 0. Proof. intros. replace k with ((k-size)+size)%nat by omega. @@ -149,13 +149,13 @@ Section Basics. Qed. Lemma firstr_firstl : - forall x, firstr x = firstl (nshiftl (pred size) x). + forall x, firstr x = firstl (nshiftl x (pred size)). Proof. destruct x; simpl; auto. Qed. Lemma firstl_firstr : - forall x, firstl x = firstr (nshiftr (pred size) x). + forall x, firstl x = firstr (nshiftr x (pred size)). Proof. destruct x; simpl; auto. Qed. @@ -163,13 +163,13 @@ Section Basics. (** More advanced results about [nshiftr] *) Lemma nshiftr_predsize_0_firstl : forall x, - nshiftr (pred size) x = 0 -> firstl x = D0. + nshiftr x (pred size) = 0 -> firstl x = D0. Proof. destruct x; compute; intros H; injection H; intros; subst; auto. Qed. Lemma nshiftr_0_propagates : forall n p x, n <= p -> - nshiftr n x = 0 -> nshiftr p x = 0. + nshiftr x n = 0 -> nshiftr x p = 0. Proof. intros. replace p with ((p-n)+n)%nat by omega. @@ -179,7 +179,7 @@ Section Basics. Qed. Lemma nshiftr_0_firstl : forall n x, n < size -> - nshiftr n x = 0 -> firstl x = D0. + nshiftr x n = 0 -> firstl x = D0. Proof. intros. apply nshiftr_predsize_0_firstl. @@ -196,15 +196,15 @@ Section Basics. forall x, P x. Proof. intros. - assert (forall n, n<=size -> P (nshiftr (size - n) x)). + assert (forall n, n<=size -> P (nshiftr x (size - n))). induction n; intros. rewrite nshiftr_size; auto. rewrite sneakl_shiftr. apply H0. - change (P (nshiftr (S (size - S n)) x)). + change (P (nshiftr x (S (size - S n)))). replace (S (size - S n))%nat with (size - n)%nat by omega. apply IHn; omega. - change x with (nshiftr (size-size) x); auto. + change x with (nshiftr x (size-size)); auto. Qed. Lemma int31_ind_twice : forall P : int31->Prop, @@ -235,8 +235,8 @@ Section Basics. Lemma recr_aux_converges : forall n p x, n <= size -> n <= p -> - recr_aux n A case0 caserec (nshiftr (size - n) x) = - recr_aux p A case0 caserec (nshiftr (size - n) x). + recr_aux n A case0 caserec (nshiftr x (size - n)) = + recr_aux p A case0 caserec (nshiftr x (size - n)). Proof. induction n. simpl minus; intros. @@ -245,9 +245,9 @@ Section Basics. destruct p. inversion H0. unfold recr_aux; fold recr_aux. - destruct (iszero (nshiftr (size - S n) x)); auto. + destruct (iszero (nshiftr x (size - S n))); auto. f_equal. - change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x). + change (shiftr (nshiftr x (size - S n))) with (nshiftr x (S (size - S n))). replace (S (size - S n))%nat with (size - n)%nat by omega. apply IHn; auto with arith. Qed. @@ -258,7 +258,7 @@ Section Basics. Proof. intros. unfold recr. - change x with (nshiftr (size - size) x). + change x with (nshiftr x (size - size)). rewrite (recr_aux_converges size (S size)); auto with arith. rewrite recr_aux_eqn; auto. Qed. @@ -435,22 +435,22 @@ Section Basics. Lemma phibis_aux_bounded : forall n x, n <= size -> - (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z.of_nat n))%Z. + (phibis_aux n (nshiftr x (size-n)) < 2 ^ (Z.of_nat n))%Z. Proof. induction n. simpl minus; unfold phibis_aux; simpl; auto with zarith. intros. unfold phibis_aux, recrbis_aux; fold recrbis_aux; - fold (phibis_aux n (shiftr (nshiftr (size - S n) x))). - assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x). + fold (phibis_aux n (shiftr (nshiftr x (size - S n)))). + assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)). replace (size - n)%nat with (S (size - (S n))) by omega. simpl; auto. rewrite H0. assert (H1 : n <= size) by omega. specialize (IHn x H1). - set (y:=phibis_aux n (nshiftr (size - n) x)) in *. + set (y:=phibis_aux n (nshiftr x (size - n))) in *. rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. - case_eq (firstr (nshiftr (size - S n) x)); intros. + case_eq (firstr (nshiftr x (size - S n))); intros. rewrite Z.double_spec; auto with zarith. rewrite Z.succ_double_spec; auto with zarith. Qed. @@ -461,12 +461,12 @@ Section Basics. rewrite <- phibis_aux_equiv. split. apply phibis_aux_pos. - change x with (nshiftr (size-size) x). + change x with (nshiftr x (size-size)). apply phibis_aux_bounded; auto. Qed. Lemma phibis_aux_lowerbound : - forall n x, firstr (nshiftr n x) = D1 -> + forall n x, firstr (nshiftr x n) = D1 -> (2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z. Proof. induction n. @@ -508,7 +508,7 @@ Section Basics. (** After killing [n] bits at the left, are the numbers equal ?*) Definition EqShiftL n x y := - nshiftl n x = nshiftl n y. + nshiftl x n = nshiftl y n. Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y. Proof. @@ -600,7 +600,7 @@ Section Basics. end. Lemma i2l_nshiftl : forall n x, n<=size -> - i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x). + i2l (nshiftl x n) = cstlist _ D0 n ++ firstn (size-n) (i2l x). Proof. induction n. intros. @@ -644,13 +644,13 @@ Section Basics. unfold EqShiftL. assert (k <= size) by omega. split; intros. - assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto). + assert (i2l (nshiftl x k) = i2l (nshiftl y k)) by (f_equal; auto). rewrite 2 i2l_nshiftl in H1; auto. eapply app_inv_head; eauto. - assert (i2l (nshiftl k x) = i2l (nshiftl k y)). + assert (i2l (nshiftl x k) = i2l (nshiftl y k)). rewrite 2 i2l_nshiftl; auto. f_equal; auto. - rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)). + rewrite <- (l2i_i2l (nshiftl x k)), <- (l2i_i2l (nshiftl y k)). f_equal; auto. Qed. @@ -818,30 +818,30 @@ Section Basics. Lemma phi_inv_phi_aux : forall n x, n <= size -> - phi_inv (phibis_aux n (nshiftr (size-n) x)) = - nshiftr (size-n) x. + phi_inv (phibis_aux n (nshiftr x (size-n))) = + nshiftr x (size-n). Proof. induction n. intros; simpl minus. rewrite nshiftr_size; auto. intros. unfold phibis_aux, recrbis_aux; fold recrbis_aux; - fold (phibis_aux n (shiftr (nshiftr (size-S n) x))). - assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x). + fold (phibis_aux n (shiftr (nshiftr x (size-S n)))). + assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)). replace (size - n)%nat with (S (size - (S n))); auto; omega. rewrite H0. - case_eq (firstr (nshiftr (size - S n) x)); intros. + case_eq (firstr (nshiftr x (size - S n))); intros. rewrite phi_inv_double. rewrite IHn by omega. rewrite <- H0. - remember (nshiftr (size - S n) x) as y. + remember (nshiftr x (size - S n)) as y. destruct y; simpl in H1; rewrite H1; auto. rewrite phi_inv_double_plus_one. rewrite IHn by omega. rewrite <- H0. - remember (nshiftr (size - S n) x) as y. + remember (nshiftr x (size - S n)) as y. destruct y; simpl in H1; rewrite H1; auto. Qed. @@ -849,7 +849,7 @@ Section Basics. Proof. intros. rewrite <- phibis_aux_equiv. - replace x with (nshiftr (size - size) x) by auto. + replace x with (nshiftr x (size - size)) by auto. apply phi_inv_phi_aux; auto. Qed. @@ -874,7 +874,7 @@ Section Basics. end. Lemma p2ibis_bounded : forall n p, - nshiftr n (snd (p2ibis n p)) = 0. + nshiftr (snd (p2ibis n p)) n = 0. Proof. induction n. simpl; intros; auto. @@ -1739,7 +1739,7 @@ Section Int31_Specs. Proof. intros. rewrite head031_equiv. - assert (nshiftl size x = 0%int31). + assert (nshiftl x size = 0%int31). apply nshiftl_size. revert x H H0. unfold size at 2 5. @@ -1837,7 +1837,7 @@ Section Int31_Specs. Proof. intros. rewrite tail031_equiv. - assert (nshiftr size x = 0%int31). + assert (nshiftr x size = 0%int31). apply nshiftr_size. revert x H H0. induction size. -- cgit v1.2.3