From 15059d887c3059e6d925310be860dd2a3cf97796 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 12 Apr 2018 10:08:05 +0200 Subject: [ssr] import ssreflect test suite from math-comp --- test-suite/prerequisite/ssr_mini_mathcomp.v | 1472 +++++++++++++++++++++++++++ test-suite/prerequisite/ssr_ssrsyntax1.v | 36 + 2 files changed, 1508 insertions(+) create mode 100644 test-suite/prerequisite/ssr_mini_mathcomp.v create mode 100644 test-suite/prerequisite/ssr_ssrsyntax1.v (limited to 'test-suite/prerequisite') diff --git a/test-suite/prerequisite/ssr_mini_mathcomp.v b/test-suite/prerequisite/ssr_mini_mathcomp.v new file mode 100644 index 000000000..cb2c56736 --- /dev/null +++ b/test-suite/prerequisite/ssr_mini_mathcomp.v @@ -0,0 +1,1472 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* -> Sortclass. +Variables (T : Type) (cT : type). + +Definition class := let: Pack _ c _ := cT return class_of cT in c. + +Definition pack c := @Pack T c T. +Definition clone := fun c & cT -> T & phant_id (pack c) cT => pack c. + +End ClassDef. + +Module Exports. +Coercion sort : type >-> Sortclass. +Notation eqType := type. +Notation EqMixin := Mixin. +Notation EqType T m := (@pack T m). +Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T) + (at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope. +Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id) + (at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope. +Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id) + (at level 0, format "[ 'eqType' 'of' T ]") : form_scope. +End Exports. + +End Equality. +Export Equality.Exports. + +Definition eq_op T := Equality.op (Equality.class T). + +Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x. +Proof. by []. Qed. + +Lemma eqP T : Equality.axiom (@eq_op T). +Proof. by case: T => ? []. Qed. +Arguments eqP [T x y]. + +Delimit Scope eq_scope with EQ. +Open Scope eq_scope. + +Notation "x == y" := (eq_op x y) + (at level 70, no associativity) : bool_scope. +Notation "x == y :> T" := ((x : T) == (y : T)) + (at level 70, y at next level) : bool_scope. +Notation "x != y" := (~~ (x == y)) + (at level 70, no associativity) : bool_scope. +Notation "x != y :> T" := (~~ (x == y :> T)) + (at level 70, y at next level) : bool_scope. +Notation "x =P y" := (eqP : reflect (x = y) (x == y)) + (at level 70, no associativity) : eq_scope. +Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T)) + (at level 70, y at next level, no associativity) : eq_scope. + +Prenex Implicits eq_op eqP. + +Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed. +Notation eqxx := eq_refl. + +Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x). +Proof. exact/eqP/eqP. Qed. + +Hint Resolve eq_refl eq_sym. + + +Definition eqb b := addb (~~ b). + +Lemma eqbP : Equality.axiom eqb. +Proof. by do 2!case; constructor. Qed. + +Canonical bool_eqMixin := EqMixin eqbP. +Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin. + +Section ProdEqType. + +Variable T1 T2 : eqType. + +Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)]. + +Lemma pair_eqP : Equality.axiom pair_eq. +Proof. +move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=. +by do 2!move/eqP->. +Qed. + +Definition prod_eqMixin := EqMixin pair_eqP. +Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin. + +End ProdEqType. + +Section OptionEqType. + +Variable T : eqType. + +Definition opt_eq (u v : option T) : bool := + oapp (fun x => oapp (eq_op x) false v) (~~ v) u. + +Lemma opt_eqP : Equality.axiom opt_eq. +Proof. +case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->]. +Qed. + +Canonical option_eqMixin := EqMixin opt_eqP. +Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin. + +End OptionEqType. + +Notation xpred1 := (fun a1 x => x == a1). +Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x). + +Section EqPred. + +Variable T : eqType. + +Definition pred1 (a1 : T) := SimplPred (xpred1 a1). +Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p). + +End EqPred. + +Section TransferEqType. + +Variables (T : Type) (eT : eqType) (f : T -> eT). + +Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y). +Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; apply: f_inj. Qed. + +Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj). + +Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK). + +Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK). + +End TransferEqType. + +(* We use the module system to circumvent a silly limitation that *) +(* forbids using the same constant to coerce to different targets. *) +Module Type EqTypePredSig. +Parameter sort : eqType -> predArgType. +End EqTypePredSig. +Module MakeEqTypePred (eqmod : EqTypePredSig). +Coercion eqmod.sort : eqType >-> predArgType. +End MakeEqTypePred. +Module Export EqTypePred := MakeEqTypePred Equality. + + +Section SubType. + +Variables (T : Type) (P : pred T). + +Structure subType : Type := SubType { + sub_sort :> Type; + val : sub_sort -> T; + Sub : forall x, P x -> sub_sort; + _ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u; + _ : forall x Px, val (@Sub x Px) = x +}. + +Arguments Sub [s]. +Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed. +Definition vrefl_rect := vrefl. + +Definition clone_subType U v := + fun sT & sub_sort sT -> U => + fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'. + +Variable sT : subType. + +CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px). + +Lemma SubP u : Sub_spec u. +Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed. + +Lemma SubK x Px : @val sT (Sub x Px) = x. +Proof. by case: sT. Qed. + +Definition insub x := + if @idP (P x) is ReflectT Px then @Some sT (Sub x Px) else None. + +Definition insubd u0 x := odflt u0 (insub x). + +CoInductive insub_spec x : option sT -> Type := + | InsubSome u of P x & val u = x : insub_spec x (Some u) + | InsubNone of ~~ P x : insub_spec x None. + +Lemma insubP x : insub_spec x (insub x). +Proof. +by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; apply/negP]. +Qed. + +Lemma insubT x Px : insub x = Some (Sub x Px). +Admitted. + +Lemma insubF x : P x = false -> insub x = None. +Proof. by move/idP; case: insubP. Qed. + +Lemma insubN x : ~~ P x -> insub x = None. +Proof. by move/negPf/insubF. Qed. + +Lemma isSome_insub : ([eta insub] : pred T) =1 P. +Proof. by apply: fsym => x; case: insubP => // /negPf. Qed. + +Lemma insubK : ocancel insub (@val _). +Proof. by move=> x; case: insubP. Qed. + +Lemma valP (u : sT) : P (val u). +Proof. by case/SubP: u => x Px; rewrite SubK. Qed. + +Lemma valK : pcancel (@val _) insub. +Proof. by case/SubP=> x Px; rewrite SubK; apply: insubT. Qed. + +Lemma val_inj : injective (@val sT). +Proof. exact: pcan_inj valK. Qed. + +Lemma valKd u0 : cancel (@val _) (insubd u0). +Proof. by move=> u; rewrite /insubd valK. Qed. + +Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0. +Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed. + +Lemma insubdK u0 : {in P, cancel (insubd u0) (@val _)}. +Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed. + +Definition insub_eq x := + let Some_sub Px := Some (Sub x Px : sT) in + let None_sub _ := None in + (if P x as Px return P x = Px -> _ then Some_sub else None_sub) (erefl _). + +Lemma insub_eqE : insub_eq =1 insub. +Proof. +rewrite /insub_eq /insub => x; case: {2 3}_ / idP (erefl _) => // Px Px'. +by congr (Some _); apply: val_inj; rewrite !SubK. +Qed. + +End SubType. + +Arguments SubType [T P]. +Arguments Sub [T P s]. +Arguments vrefl [T P]. +Arguments vrefl_rect [T P]. +Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. +Arguments insub [T P sT]. +Arguments insubT [T] P [sT x]. +Arguments val_inj [T P sT]. +Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj. + +Local Notation inlined_sub_rect := + (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px). + +Local Notation inlined_new_rect := + (fun K K_S u => let (x) as u return K u := u in K_S x). + +Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect) + (at level 0, only parsing) : form_scope. + +Notation "[ 'sub' 'Type' 'for' v ]" := (SubType _ v _ _ vrefl_rect) + (at level 0, format "[ 'sub' 'Type' 'for' v ]") : form_scope. + +Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl) + (at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope. + +Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun) + (at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope. + +(* +Notation "[ 'subType' 'for' v ]" := (clone_subType _ v id idfun) + (at level 0, format "[ 'subType' 'for' v ]") : form_scope. +*) +Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id) + (at level 0, format "[ 'subType' 'of' U ]") : form_scope. + +Definition NewType T U v c Urec := + let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in + SubType U v (fun x _ => c x) Urec'. +Arguments NewType [T U]. + +Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect) + (at level 0, only parsing) : form_scope. + +Notation "[ 'new' 'Type' 'for' v ]" := (NewType v _ _ vrefl_rect) + (at level 0, format "[ 'new' 'Type' 'for' v ]") : form_scope. + +Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl) + (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope. + +Definition innew T nT x := @Sub T predT nT x (erefl true). +Arguments innew [T nT]. +Prenex Implicits innew. + +Lemma innew_val T nT : cancel val (@innew T nT). +Proof. by move=> u; apply: val_inj; apply: SubK. Qed. + +(* Prenex Implicits and renaming. *) +Notation sval := (@proj1_sig _ _). +Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'"). + +Section SubEqType. + +Variables (T : eqType) (P : pred T) (sT : subType P). + +Local Notation ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)). +Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed. + +Definition sub_eqMixin := EqMixin val_eqP. +Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin. + +Definition SubEqMixin := + (let: SubType _ v _ _ _ as sT' := sT + return ev_ax sT' val -> Equality.class_of sT' in + fun vP : ev_ax _ v => EqMixin vP + ) val_eqP. + +Lemma val_eqE (u v : sT) : (val u == val v) = (u == v). +Proof. by []. Qed. + +End SubEqType. + +Arguments val_eqP [T P sT x y]. +Prenex Implicits val_eqP. + +Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T) + (at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope. + +(* ssrnat ---------------------------------------------------------- *) + +Notation succn := Datatypes.S. +Notation predn := Peano.pred. + +Notation "n .+1" := (succn n) (at level 2, left associativity, + format "n .+1") : nat_scope. +Notation "n .+2" := n.+1.+1 (at level 2, left associativity, + format "n .+2") : nat_scope. +Notation "n .+3" := n.+2.+1 (at level 2, left associativity, + format "n .+3") : nat_scope. +Notation "n .+4" := n.+2.+2 (at level 2, left associativity, + format "n .+4") : nat_scope. + +Notation "n .-1" := (predn n) (at level 2, left associativity, + format "n .-1") : nat_scope. +Notation "n .-2" := n.-1.-1 (at level 2, left associativity, + format "n .-2") : nat_scope. + +Fixpoint eqn m n {struct m} := + match m, n with + | 0, 0 => true + | m'.+1, n'.+1 => eqn m' n' + | _, _ => false + end. + +Lemma eqnP : Equality.axiom eqn. +Proof. +move=> n m; apply: (iffP idP) => [|<-]; last by elim n. +by elim: n m => [|n IHn] [|m] //= /IHn->. +Qed. + +Canonical nat_eqMixin := EqMixin eqnP. +Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin. + +Arguments eqnP [x y]. +Prenex Implicits eqnP. + +Coercion nat_of_bool (b : bool) := if b then 1 else 0. + +Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false. + +Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed. + +Definition subn_rec := minus. +Notation "m - n" := (subn_rec m n) : nat_rec_scope. + +Definition subn := nosimpl subn_rec. +Notation "m - n" := (subn m n) : nat_scope. + +Definition leq m n := m - n == 0. + +Notation "m <= n" := (leq m n) : nat_scope. +Notation "m < n" := (m.+1 <= n) : nat_scope. +Notation "m >= n" := (n <= m) (only parsing) : nat_scope. +Notation "m > n" := (n < m) (only parsing) : nat_scope. + + +Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope. +Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope. +Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope. +Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope. + +Open Scope nat_scope. + + +Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed. +Lemma leq0n n : 0 <= n. Proof. by []. Qed. +Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed. +Lemma ltn0 n : n < 0 = false. Proof. by []. Qed. +Lemma leqnn n : n <= n. Proof. by elim: n. Qed. +Hint Resolve leqnn. +Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed. + +Lemma leq_trans n m p : m <= n -> n <= p -> m <= p. +Admitted. +Lemma leqW m n : m <= n -> m <= n.+1. +Admitted. +Hint Resolve leqnSn. +Lemma ltnW m n : m < n -> m <= n. +Proof. exact: leq_trans. Qed. +Hint Resolve ltnW. + +Definition addn_rec := plus. +Notation "m + n" := (addn_rec m n) : nat_rec_scope. + +Definition addn := nosimpl addn_rec. +Notation "m + n" := (addn m n) : nat_scope. + +Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed. +Lemma add0n : left_id 0 addn. Proof. by []. Qed. +Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed. +Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by elim: m. Qed. + +Lemma addnCA : left_commutative addn. +Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed. + +Lemma addnC : commutative addn. +Proof. by move=> m n; rewrite -{1}[n]addn0 addnCA addn0. Qed. + +Lemma addnA : associative addn. +Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed. + +Lemma subnK m n : m <= n -> (n - m) + m = n. +Admitted. + + +Definition muln_rec := mult. +Notation "m * n" := (muln_rec m n) : nat_rec_scope. + +Definition muln := nosimpl muln_rec. +Notation "m * n" := (muln m n) : nat_scope. + +Lemma mul0n : left_zero 0 muln. Proof. by []. Qed. +Lemma muln0 : right_zero 0 muln. Proof. by elim. Qed. +Lemma mul1n : left_id 1 muln. Proof. exact: addn0. Qed. + +Lemma mulSn m n : m.+1 * n = n + m * n. Proof. by []. Qed. +Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed. + +Lemma mulnS m n : m * n.+1 = m + m * n. +Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed. + +Lemma mulnSr m n : m * n.+1 = m * n + m. +Proof. by rewrite addnC mulnS. Qed. + +Lemma muln1 : right_id 1 muln. +Proof. by move=> n; rewrite mulnSr muln0. Qed. + +Lemma mulnC : commutative muln. +Proof. +by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->. +Qed. + +Lemma mulnDl : left_distributive muln addn. +Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed. + +Lemma mulnDr : right_distributive muln addn. +Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed. + +Lemma mulnA : associative muln. +Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed. + +Lemma mulnCA : left_commutative muln. +Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed. + +Lemma mulnAC : right_commutative muln. +Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed. + +Lemma mulnACA : interchange muln muln. +Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed. + +(* seq ------------------------------------------------------------- *) + +Delimit Scope seq_scope with SEQ. +Open Scope seq_scope. + +(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *) +Notation seq := list. +Prenex Implicits cons. +Notation Cons T := (@cons T) (only parsing). +Notation Nil T := (@nil T) (only parsing). + +Bind Scope seq_scope with list. +Arguments cons _%type _ _%SEQ. + +(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *) +(* them here. *) +Infix "::" := cons : seq_scope. + +(* GG - this triggers a camlp4 warning, as if this Notation had been Reserved *) +Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope. + +Notation "[ :: x1 ]" := (x1 :: [::]) + (at level 0, format "[ :: x1 ]") : seq_scope. + +Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope. + +Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..) + (at level 0, format + "'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'" + ) : seq_scope. + +Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..) + (at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]" + ) : seq_scope. + +Section Sequences. + +Variable n0 : nat. (* numerical parameter for take, drop et al *) +Variable T : Type. (* must come before the implicit Type *) +Variable x0 : T. (* default for head/nth *) + +Implicit Types x y z : T. +Implicit Types m n : nat. +Implicit Type s : seq T. + +Fixpoint size s := if s is _ :: s' then (size s').+1 else 0. + +Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2 +where "s1 ++ s2" := (cat s1 s2) : seq_scope. + +Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed. + +Lemma cats0 s : s ++ [::] = s. +Proof. by elim: s => //= x s ->. Qed. + +Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3. +Proof. by elim: s1 => //= x s1 ->. Qed. + +Fixpoint nth s n {struct n} := + if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0. + +Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z]. + +CoInductive last_spec : seq T -> Type := + | LastNil : last_spec [::] + | LastRcons s x : last_spec (rcons s x). + +Lemma lastP s : last_spec s. +Proof using. Admitted. + +Lemma last_ind P : + P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s. +Proof using. Admitted. + + +Section Map. + +Variables (T2 : Type) (f : T -> T2). + +Fixpoint map s := if s is x :: s' then f x :: map s' else [::]. + +End Map. + +Section SeqFind. + +Variable a : pred T. + +Fixpoint count s := if s is x :: s' then a x + count s' else 0. + +Fixpoint filter s := + if s is x :: s' then if a x then x :: filter s' else filter s' else [::]. + +End SeqFind. + +End Sequences. + +Infix "++" := cat : seq_scope. + +Notation count_mem x := (count (pred_of_simpl (pred1 x))). + +Section EqSeq. + +Variables (n0 : nat) (T : eqType) (x0 : T). +Local Notation nth := (nth x0). +Implicit Type s : seq T. +Implicit Types x y z : T. + +Fixpoint eqseq s1 s2 {struct s2} := + match s1, s2 with + | [::], [::] => true + | x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2' + | _, _ => false + end. + +Lemma eqseqP : Equality.axiom eqseq. +Proof. +move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl]. +case: (x1 =P x2) => [<-|neqx]; last by right; case. +by apply: (iffP (IHs s2)) => [<-|[]]. +Qed. + +Canonical seq_eqMixin := EqMixin eqseqP. +Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin. + +Fixpoint mem_seq (s : seq T) := + if s is y :: s' then xpredU1 y (mem_seq s') else xpred0. + +Definition eqseq_class := seq T. +Identity Coercion seq_of_eqseq : eqseq_class >-> seq. +Coercion pred_of_eq_seq (s : eqseq_class) : pred_class := [eta mem_seq s]. + +Canonical seq_predType := @mkPredType T (seq T) pred_of_eq_seq. + +Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true. + +End EqSeq. + +Definition bitseq := seq bool. +Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. +Canonical bitseq_predType := Eval hnf in [predType of bitseq]. + +Section Pmap. + +Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT). + +Fixpoint pmap s := + if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::]. + +End Pmap. + +Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::]. + +Section FoldRight. + +Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R). + +Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0. + +End FoldRight. + +Lemma mem_iota m n i : (i \in iota m n) = (m <= i) && (i < m + n). +Admitted. + + +(* choice ------------------------------------------------------------- *) + +Module Choice. + +Section ClassDef. + +Record mixin_of T := Mixin { + find : pred T -> nat -> option T; + _ : forall P n x, find P n = Some x -> P x; + _ : forall P : pred T, (exists x, P x) -> exists n, find P n; + _ : forall P Q : pred T, P =1 Q -> find P =1 find Q +}. + +Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}. +Local Coercion base : class_of >-> Equality.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack m := + fun b bT & phant_id (Equality.class bT) b => Pack (@Class T b m) T. + +(* Inheritance *) +Definition eqType := @Equality.Pack cT xclass xT. + +End ClassDef. + +Module Import Exports. +Coercion base : class_of >-> Equality.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Notation choiceType := type. +Notation choiceMixin := mixin_of. +Notation ChoiceType T m := (@pack T m _ _ id). +Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'choiceType' 'of' T ]") : form_scope. + +End Exports. + +End Choice. +Export Choice.Exports. + +Section ChoiceTheory. + +Variable T : choiceType. + +Section CanChoice. + +Variables (sT : Type) (f : sT -> T). + +Lemma PcanChoiceMixin f' : pcancel f f' -> choiceMixin sT. +Admitted. + +Definition CanChoiceMixin f' (fK : cancel f f') := + PcanChoiceMixin (can_pcan fK). + +End CanChoice. + +Section SubChoice. + +Variables (P : pred T) (sT : subType P). + +Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT). +Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin. +Canonical sub_choiceType := Choice.Pack sub_choiceClass sT. + +End SubChoice. + + +Fact seq_choiceMixin : choiceMixin (seq T). +Admitted. +Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin. +End ChoiceTheory. + +Fact nat_choiceMixin : choiceMixin nat. +Proof. +pose f := [fun (P : pred nat) n => if P n then Some n else None]. +exists f => [P n m | P [n Pn] | P Q eqPQ n] /=; last by rewrite eqPQ. + by case: ifP => // Pn [<-]. +by exists n; rewrite Pn. +Qed. +Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin. + +Definition bool_choiceMixin := CanChoiceMixin oddb. +Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin. +Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq]. + + +Notation "[ 'choiceMixin' 'of' T 'by' <: ]" := + (sub_choiceMixin _ : choiceMixin T) + (at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope. + + + + +Module Countable. + +Record mixin_of (T : Type) : Type := Mixin { + pickle : T -> nat; + unpickle : nat -> option T; + pickleK : pcancel pickle unpickle +}. + +Definition EqMixin T m := PcanEqMixin (@pickleK T m). +Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m). + +Section ClassDef. + +Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }. +Local Coercion base : class_of >-> Choice.class_of. + +Structure type : Type := Pack {sort : Type; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack m := + fun bT b & phant_id (Choice.class bT) b => Pack (@Class T b m) T. + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> Choice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Notation countType := type. +Notation CountType T m := (@pack T m _ _ id). +Notation CountMixin := Mixin. +Notation CountChoiceMixin := ChoiceMixin. +Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'countType' 'of' T ]") : form_scope. + +End Exports. + +End Countable. +Export Countable.Exports. + +Definition unpickle T := Countable.unpickle (Countable.class T). +Definition pickle T := Countable.pickle (Countable.class T). +Arguments unpickle [T]. +Prenex Implicits pickle unpickle. + +Section CountableTheory. + +Variable T : countType. + +Lemma pickleK : @pcancel nat T pickle unpickle. +Proof. exact: Countable.pickleK. Qed. + +Definition pickle_inv n := + obind (fun x : T => if pickle x == n then Some x else None) (unpickle n). + +Lemma pickle_invK : ocancel pickle_inv pickle. +Proof. +by rewrite /pickle_inv => n; case def_x: (unpickle n) => //= [x]; case: eqP. +Qed. + +Lemma pickleK_inv : pcancel pickle pickle_inv. +Proof. by rewrite /pickle_inv => x; rewrite pickleK /= eqxx. Qed. + +Lemma pcan_pickleK sT f f' : + @pcancel T sT f f' -> pcancel (pickle \o f) (pcomp f' unpickle). +Proof. by move=> fK x; rewrite /pcomp pickleK /= fK. Qed. + +Definition PcanCountMixin sT f f' (fK : pcancel f f') := + @CountMixin sT _ _ (pcan_pickleK fK). + +Definition CanCountMixin sT f f' (fK : cancel f f') := + @PcanCountMixin sT _ _ (can_pcan fK). + +Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT). + +End CountableTheory. +Notation "[ 'countMixin' 'of' T 'by' <: ]" := + (sub_countMixin _ : Countable.mixin_of T) + (at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope. + +Section SubCountType. + +Variables (T : choiceType) (P : pred T). +Import Countable. + +Structure subCountType : Type := + SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}. + +Coercion sub_countType (sT : subCountType) := + Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id. +Canonical sub_countType. + +Definition pack_subCountType U := + fun sT cT & sub_sort sT * sort cT -> U * U => + fun b m & phant_id (Class b m) (class cT) => @SubCountType sT m. + +End SubCountType. + +(* This assumes that T has both countType and subType structures. *) +Notation "[ 'subCountType' 'of' T ]" := + (@pack_subCountType _ _ T _ _ id _ _ id) + (at level 0, format "[ 'subCountType' 'of' T ]") : form_scope. + +Lemma nat_pickleK : pcancel id (@Some nat). Proof. by []. Qed. +Definition nat_countMixin := CountMixin nat_pickleK. +Canonical nat_countType := Eval hnf in CountType nat nat_countMixin. + +(* fintype --------------------------------------------------------- *) + +Module Finite. + +Section RawMixin. + +Variable T : eqType. + +Definition axiom e := forall x : T, count_mem x e = 1. + +Lemma uniq_enumP e : uniq e -> e =i T -> axiom e. +Admitted. + +Record mixin_of := Mixin { + mixin_base : Countable.mixin_of T; + mixin_enum : seq T; + _ : axiom mixin_enum +}. + +End RawMixin. + +Section Mixins. + +Variable T : countType. + +Definition EnumMixin := + let: Countable.Pack _ (Countable.Class _ m) _ as cT := T + return forall e : seq cT, axiom e -> mixin_of cT in + @Mixin (EqType _ _) m. + +Definition UniqMixin e Ue eT := @EnumMixin e (uniq_enumP Ue eT). + +Variable n : nat. + +End Mixins. + +Section ClassDef. + +Record class_of T := Class { + base : Choice.class_of T; + mixin : mixin_of (Equality.Pack base T) +}. +Definition base2 T c := Countable.Class (@base T c) (mixin_base (mixin c)). +Local Coercion base : class_of >-> Choice.class_of. + +Structure type : Type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Variables (T : Type) (cT : type). +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack T c T. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack b0 (m0 : mixin_of (EqType T b0)) := + fun bT b & phant_id (Choice.class bT) b => + fun m & phant_id m0 m => Pack (@Class T b m) T. + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (base2 xclass) xT. + +End ClassDef. + +Module Import Exports. +Coercion mixin_base : mixin_of >-> Countable.mixin_of. +Coercion base : class_of >-> Choice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion base2 : class_of >-> Countable.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Notation finType := type. +Notation FinType T m := (@pack T _ m _ _ id _ id). +Notation FinMixin := EnumMixin. +Notation UniqFinMixin := UniqMixin. +Notation "[ 'finType' 'of' T 'for' cT ]" := (@clone T cT _ idfun) + (at level 0, format "[ 'finType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'finType' 'of' T ]" := (@clone T _ _ id) + (at level 0, format "[ 'finType' 'of' T ]") : form_scope. +End Exports. + +Module Type EnumSig. +Parameter enum : forall cT : type, seq cT. +Axiom enumDef : enum = fun cT => mixin_enum (class cT). +End EnumSig. + +Module EnumDef : EnumSig. +Definition enum cT := mixin_enum (class cT). +Definition enumDef := erefl enum. +End EnumDef. + +Notation enum := EnumDef.enum. + +End Finite. +Export Finite.Exports. + +Section SubFinType. + +Variables (T : choiceType) (P : pred T). +Import Finite. + +Structure subFinType := SubFinType { + subFin_sort :> subType P; + _ : mixin_of (sub_eqType subFin_sort) +}. + +Definition pack_subFinType U := + fun cT b m & phant_id (class cT) (@Class U b m) => + fun sT m' & phant_id m' m => @SubFinType sT m'. + +Implicit Type sT : subFinType. + +Definition subFin_mixin sT := + let: SubFinType _ m := sT return mixin_of (sub_eqType sT) in m. + +Coercion subFinType_subCountType sT := @SubCountType _ _ sT (subFin_mixin sT). +Canonical subFinType_subCountType. + +Coercion subFinType_finType sT := + Pack (@Class sT (sub_choiceClass sT) (subFin_mixin sT)) sT. +Canonical subFinType_finType. + +Definition enum_mem T (mA : mem_pred _) := filter mA (Finite.enum T). +Definition image_mem T T' f mA : seq T' := map f (@enum_mem T mA). +Definition codom T T' f := @image_mem T T' f (mem T). + +Lemma codom_val sT x : (x \in codom (val : sT -> T)) = P x. +Admitted. + +End SubFinType. + + +(* This assumes that T has both finType and subCountType structures. *) +Notation "[ 'subFinType' 'of' T ]" := (@pack_subFinType _ _ T _ _ _ id _ _ id) + (at level 0, format "[ 'subFinType' 'of' T ]") : form_scope. + + + +Section OrdinalSub. + +Variable n : nat. + +Inductive ordinal : predArgType := Ordinal m of m < n. + +Coercion nat_of_ord i := let: Ordinal m _ := i in m. + +Canonical ordinal_subType := [subType for nat_of_ord]. +Definition ordinal_eqMixin := Eval hnf in [eqMixin of ordinal by <:]. +Canonical ordinal_eqType := Eval hnf in EqType ordinal ordinal_eqMixin. +Definition ordinal_choiceMixin := [choiceMixin of ordinal by <:]. +Canonical ordinal_choiceType := + Eval hnf in ChoiceType ordinal ordinal_choiceMixin. +Definition ordinal_countMixin := [countMixin of ordinal by <:]. +Canonical ordinal_countType := Eval hnf in CountType ordinal ordinal_countMixin. +Canonical ordinal_subCountType := [subCountType of ordinal]. + +Lemma ltn_ord (i : ordinal) : i < n. Proof. exact: valP i. Qed. + +Lemma ord_inj : injective nat_of_ord. Proof. exact: val_inj. Qed. + +Definition ord_enum : seq ordinal := pmap insub (iota 0 n). + +Lemma val_ord_enum : map val ord_enum = iota 0 n. +Admitted. + +Lemma ord_enum_uniq : uniq ord_enum. +Admitted. + +Lemma mem_ord_enum i : i \in ord_enum. +Admitted. + +Definition ordinal_finMixin := + Eval hnf in UniqFinMixin ord_enum_uniq mem_ord_enum. +Canonical ordinal_finType := Eval hnf in FinType ordinal ordinal_finMixin. +Canonical ordinal_subFinType := Eval hnf in [subFinType of ordinal]. + +End OrdinalSub. + +Notation "''I_' n" := (ordinal n) + (at level 8, n at level 2, format "''I_' n"). + +(* bigop ----------------------------------------------------------------- *) + +Reserved Notation "\big [ op / idx ]_ i F" + (at level 36, F at level 36, op, idx at level 10, i at level 0, + right associativity, + format "'[' \big [ op / idx ]_ i '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i <- r | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, r at level 50, + format "'[' \big [ op / idx ]_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i <- r ) F" + (at level 36, F at level 36, op, idx at level 10, i, r at level 50, + format "'[' \big [ op / idx ]_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" + (at level 36, F at level 36, op, idx at level 10, m, i, n at level 50, + format "'[' \big [ op / idx ]_ ( m <= i < n | P ) F ']'"). +Reserved Notation "\big [ op / idx ]_ ( m <= i < n ) F" + (at level 36, F at level 36, op, idx at level 10, i, m, n at level 50, + format "'[' \big [ op / idx ]_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i | P ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i : t | P ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i : t | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i : t ) F" + (at level 36, F at level 36, op, idx at level 10, i at level 50, + format "'[' \big [ op / idx ]_ ( i : t ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i < n | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, n at level 50, + format "'[' \big [ op / idx ]_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i < n ) F" + (at level 36, F at level 36, op, idx at level 10, i, n at level 50, + format "'[' \big [ op / idx ]_ ( i < n ) F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" + (at level 36, F at level 36, op, idx at level 10, i, A at level 50, + format "'[' \big [ op / idx ]_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\big [ op / idx ]_ ( i 'in' A ) F" + (at level 36, F at level 36, op, idx at level 10, i, A at level 50, + format "'[' \big [ op / idx ]_ ( i 'in' A ) '/ ' F ']'"). + +Module Monoid. + +Section Definitions. +Variables (T : Type) (idm : T). + +Structure law := Law { + operator : T -> T -> T; + _ : associative operator; + _ : left_id idm operator; + _ : right_id idm operator +}. +Local Coercion operator : law >-> Funclass. + +Structure com_law := ComLaw { + com_operator : law; + _ : commutative com_operator +}. +Local Coercion com_operator : com_law >-> law. + +Structure mul_law := MulLaw { + mul_operator : T -> T -> T; + _ : left_zero idm mul_operator; + _ : right_zero idm mul_operator +}. +Local Coercion mul_operator : mul_law >-> Funclass. + +Structure add_law (mul : T -> T -> T) := AddLaw { + add_operator : com_law; + _ : left_distributive mul add_operator; + _ : right_distributive mul add_operator +}. +Local Coercion add_operator : add_law >-> com_law. + +Let op_id (op1 op2 : T -> T -> T) := phant_id op1 op2. + +Definition clone_law op := + fun (opL : law) & op_id opL op => + fun opmA op1m opm1 (opL' := @Law op opmA op1m opm1) + & phant_id opL' opL => opL'. + +Definition clone_com_law op := + fun (opL : law) (opC : com_law) & op_id opL op & op_id opC op => + fun opmC (opC' := @ComLaw opL opmC) & phant_id opC' opC => opC'. + +Definition clone_mul_law op := + fun (opM : mul_law) & op_id opM op => + fun op0m opm0 (opM' := @MulLaw op op0m opm0) & phant_id opM' opM => opM'. + +Definition clone_add_law mop aop := + fun (opC : com_law) (opA : add_law mop) & op_id opC aop & op_id opA aop => + fun mopDm mopmD (opA' := @AddLaw mop opC mopDm mopmD) + & phant_id opA' opA => opA'. + +End Definitions. + +Module Import Exports. +Coercion operator : law >-> Funclass. +Coercion com_operator : com_law >-> law. +Coercion mul_operator : mul_law >-> Funclass. +Coercion add_operator : add_law >-> com_law. +Notation "[ 'law' 'of' f ]" := (@clone_law _ _ f _ id _ _ _ id) + (at level 0, format"[ 'law' 'of' f ]") : form_scope. +Notation "[ 'com_law' 'of' f ]" := (@clone_com_law _ _ f _ _ id id _ id) + (at level 0, format "[ 'com_law' 'of' f ]") : form_scope. +Notation "[ 'mul_law' 'of' f ]" := (@clone_mul_law _ _ f _ id _ _ id) + (at level 0, format"[ 'mul_law' 'of' f ]") : form_scope. +Notation "[ 'add_law' m 'of' a ]" := (@clone_add_law _ _ m a _ _ id id _ _ id) + (at level 0, format "[ 'add_law' m 'of' a ]") : form_scope. +End Exports. + +Section CommutativeAxioms. + +Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T). +Hypothesis mulC : commutative mul. + +Lemma mulC_id : left_id one mul -> right_id one mul. +Proof. by move=> mul1x x; rewrite mulC. Qed. + +Lemma mulC_zero : left_zero zero mul -> right_zero zero mul. +Proof. by move=> mul0x x; rewrite mulC. Qed. + +Lemma mulC_dist : left_distributive mul add -> right_distributive mul add. +Proof. by move=> mul_addl x y z; rewrite !(mulC x). Qed. + +End CommutativeAxioms. +Module Theory. + +Section Theory. +Variables (T : Type) (idm : T). + +Section Plain. +Variable mul : law idm. +Lemma mul1m : left_id idm mul. Proof. by case mul. Qed. +Lemma mulm1 : right_id idm mul. Proof. by case mul. Qed. +Lemma mulmA : associative mul. Proof. by case mul. Qed. +(*Lemma iteropE n x : iterop n mul x idm = iter n (mul x) idm.*) + +End Plain. + +Section Commutative. +Variable mul : com_law idm. +Lemma mulmC : commutative mul. Proof. by case mul. Qed. +Lemma mulmCA : left_commutative mul. +Proof. by move=> x y z; rewrite !mulmA (mulmC x). Qed. +Lemma mulmAC : right_commutative mul. +Proof. by move=> x y z; rewrite -!mulmA (mulmC y). Qed. +Lemma mulmACA : interchange mul mul. +Proof. by move=> x y z t; rewrite -!mulmA (mulmCA y). Qed. +End Commutative. + +Section Mul. +Variable mul : mul_law idm. +Lemma mul0m : left_zero idm mul. Proof. by case mul. Qed. +Lemma mulm0 : right_zero idm mul. Proof. by case mul. Qed. +End Mul. + +Section Add. +Variables (mul : T -> T -> T) (add : add_law idm mul). +Lemma addmA : associative add. Proof. exact: mulmA. Qed. +Lemma addmC : commutative add. Proof. exact: mulmC. Qed. +Lemma addmCA : left_commutative add. Proof. exact: mulmCA. Qed. +Lemma addmAC : right_commutative add. Proof. exact: mulmAC. Qed. +Lemma add0m : left_id idm add. Proof. exact: mul1m. Qed. +Lemma addm0 : right_id idm add. Proof. exact: mulm1. Qed. +Lemma mulm_addl : left_distributive mul add. Proof. by case add. Qed. +Lemma mulm_addr : right_distributive mul add. Proof. by case add. Qed. +End Add. + +Definition simpm := (mulm1, mulm0, mul1m, mul0m, mulmA). + +End Theory. + +End Theory. +Include Theory. + +End Monoid. +Export Monoid.Exports. + +Section PervasiveMonoids. + +Import Monoid. + +Canonical andb_monoid := Law andbA andTb andbT. +Canonical andb_comoid := ComLaw andbC. + +Canonical andb_muloid := MulLaw andFb andbF. +Canonical orb_monoid := Law orbA orFb orbF. +Canonical orb_comoid := ComLaw orbC. +Canonical orb_muloid := MulLaw orTb orbT. +Canonical addb_monoid := Law addbA addFb addbF. +Canonical addb_comoid := ComLaw addbC. +Canonical orb_addoid := AddLaw andb_orl andb_orr. +Canonical andb_addoid := AddLaw orb_andl orb_andr. +Canonical addb_addoid := AddLaw andb_addl andb_addr. + +Canonical addn_monoid := Law addnA add0n addn0. +Canonical addn_comoid := ComLaw addnC. +Canonical muln_monoid := Law mulnA mul1n muln1. +Canonical muln_comoid := ComLaw mulnC. +Canonical muln_muloid := MulLaw mul0n muln0. +Canonical addn_addoid := AddLaw mulnDl mulnDr. + +Canonical cat_monoid T := Law (@catA T) (@cat0s T) (@cats0 T). + +End PervasiveMonoids. +Delimit Scope big_scope with BIG. +Open Scope big_scope. + +(* The bigbody wrapper is a workaround for a quirk of the Coq pretty-printer, *) +(* which would fail to redisplay the \big notation when the or *) +(* do not depend on the bound index. The BigBody constructor *) +(* packages both in in a term in which i occurs; it also depends on the *) +(* iterated , as this can give more information on the expected type of *) +(* the , thus allowing for the insertion of coercions. *) +CoInductive bigbody R I := BigBody of I & (R -> R -> R) & bool & R. + +Definition applybig {R I} (body : bigbody R I) x := + let: BigBody _ op b v := body in if b then op v x else x. + +Definition reducebig R I idx r (body : I -> bigbody R I) := + foldr (applybig \o body) idx r. + +Module Type BigOpSig. +Parameter bigop : forall R I, R -> seq I -> (I -> bigbody R I) -> R. +Axiom bigopE : bigop = reducebig. +End BigOpSig. + +Module BigOp : BigOpSig. +Definition bigop := reducebig. +Lemma bigopE : bigop = reducebig. Proof. by []. Qed. +End BigOp. + +Notation bigop := BigOp.bigop (only parsing). +Canonical bigop_unlock := Unlockable BigOp.bigopE. + +Definition index_iota m n := iota m (n - m). + +Definition index_enum (T : finType) := Finite.enum T. + +Lemma mem_index_iota m n i : i \in index_iota m n = (m <= i < n). +Admitted. + +Lemma mem_index_enum T i : i \in index_enum T. +Admitted. + +Hint Resolve mem_index_enum. + +(* +Lemma filter_index_enum T P : filter P (index_enum T) = enum P. +Proof. by []. Qed. +*) + +Notation "\big [ op / idx ]_ ( i <- r | P ) F" := + (bigop idx r (fun i => BigBody i op P%B F)) : big_scope. +Notation "\big [ op / idx ]_ ( i <- r ) F" := + (bigop idx r (fun i => BigBody i op true F)) : big_scope. +Notation "\big [ op / idx ]_ ( m <= i < n | P ) F" := + (bigop idx (index_iota m n) (fun i : nat => BigBody i op P%B F)) + : big_scope. +Notation "\big [ op / idx ]_ ( m <= i < n ) F" := + (bigop idx (index_iota m n) (fun i : nat => BigBody i op true F)) + : big_scope. +Notation "\big [ op / idx ]_ ( i | P ) F" := + (bigop idx (index_enum _) (fun i => BigBody i op P%B F)) : big_scope. +Notation "\big [ op / idx ]_ i F" := + (bigop idx (index_enum _) (fun i => BigBody i op true F)) : big_scope. +Notation "\big [ op / idx ]_ ( i : t | P ) F" := + (bigop idx (index_enum _) (fun i : t => BigBody i op P%B F)) + (only parsing) : big_scope. +Notation "\big [ op / idx ]_ ( i : t ) F" := + (bigop idx (index_enum _) (fun i : t => BigBody i op true F)) + (only parsing) : big_scope. +Notation "\big [ op / idx ]_ ( i < n | P ) F" := + (\big[op/idx]_(i : ordinal n | P%B) F) : big_scope. +Notation "\big [ op / idx ]_ ( i < n ) F" := + (\big[op/idx]_(i : ordinal n) F) : big_scope. +Notation "\big [ op / idx ]_ ( i 'in' A | P ) F" := + (\big[op/idx]_(i | (i \in A) && P) F) : big_scope. +Notation "\big [ op / idx ]_ ( i 'in' A ) F" := + (\big[op/idx]_(i | i \in A) F) : big_scope. + +Notation BIG_F := (F in \big[_/_]_(i <- _ | _) F i)%pattern. +Notation BIG_P := (P in \big[_/_]_(i <- _ | P i) _)%pattern. + +(* Induction loading *) +Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F : + K (\big[op/idx]_(i <- r | P i) F i) * K' (\big[op/idx]_(i <- r | P i) F i) + -> K' (\big[op/idx]_(i <- r | P i) F i). +Proof. by case. Qed. + +Arguments big_load [R] K [K'] idx op [I]. + +Section Elim3. + +Variables (R1 R2 R3 : Type) (K : R1 -> R2 -> R3 -> Type). +Variables (id1 : R1) (op1 : R1 -> R1 -> R1). +Variables (id2 : R2) (op2 : R2 -> R2 -> R2). +Variables (id3 : R3) (op3 : R3 -> R3 -> R3). + +Hypothesis Kid : K id1 id2 id3. + +Lemma big_rec3 I r (P : pred I) F1 F2 F3 + (K_F : forall i y1 y2 y3, P i -> K y1 y2 y3 -> + K (op1 (F1 i) y1) (op2 (F2 i) y2) (op3 (F3 i) y3)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) + (\big[op2/id2]_(i <- r | P i) F2 i) + (\big[op3/id3]_(i <- r | P i) F3 i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed. + +Hypothesis Kop : forall x1 x2 x3 y1 y2 y3, + K x1 x2 x3 -> K y1 y2 y3-> K (op1 x1 y1) (op2 x2 y2) (op3 x3 y3). +Lemma big_ind3 I r (P : pred I) F1 F2 F3 + (K_F : forall i, P i -> K (F1 i) (F2 i) (F3 i)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) + (\big[op2/id2]_(i <- r | P i) F2 i) + (\big[op3/id3]_(i <- r | P i) F3 i). +Proof. by apply: big_rec3 => i x1 x2 x3 /K_F; apply: Kop. Qed. + +End Elim3. + +Arguments big_rec3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ [I r P F1 F2 F3]. +Arguments big_ind3 [R1 R2 R3] K [id1 op1 id2 op2 id3 op3] _ _ [I r P F1 F2 F3]. + +Section Elim2. + +Variables (R1 R2 : Type) (K : R1 -> R2 -> Type) (f : R2 -> R1). +Variables (id1 : R1) (op1 : R1 -> R1 -> R1). +Variables (id2 : R2) (op2 : R2 -> R2 -> R2). + +Hypothesis Kid : K id1 id2. + +Lemma big_rec2 I r (P : pred I) F1 F2 + (K_F : forall i y1 y2, P i -> K y1 y2 -> + K (op1 (F1 i) y1) (op2 (F2 i) y2)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: K_F. Qed. + +Hypothesis Kop : forall x1 x2 y1 y2, + K x1 x2 -> K y1 y2 -> K (op1 x1 y1) (op2 x2 y2). +Lemma big_ind2 I r (P : pred I) F1 F2 (K_F : forall i, P i -> K (F1 i) (F2 i)) : + K (\big[op1/id1]_(i <- r | P i) F1 i) (\big[op2/id2]_(i <- r | P i) F2 i). +Proof. by apply: big_rec2 => i x1 x2 /K_F; apply: Kop. Qed. + +Hypotheses (f_op : {morph f : x y / op2 x y >-> op1 x y}) (f_id : f id2 = id1). +Lemma big_morph I r (P : pred I) F : + f (\big[op2/id2]_(i <- r | P i) F i) = \big[op1/id1]_(i <- r | P i) f (F i). +Proof. by rewrite unlock; elim: r => //= i r <-; rewrite -f_op -fun_if. Qed. + +End Elim2. + +Arguments big_rec2 [R1 R2] K [id1 op1 id2 op2] _ [I r P F1 F2]. +Arguments big_ind2 [R1 R2] K [id1 op1 id2 op2] _ _ [I r P F1 F2]. +Arguments big_morph [R1 R2] f [id1 op1 id2 op2] _ _ [I]. + +Section Elim1. + +Variables (R : Type) (K : R -> Type) (f : R -> R). +Variables (idx : R) (op op' : R -> R -> R). + +Hypothesis Kid : K idx. + +Lemma big_rec I r (P : pred I) F + (Kop : forall i x, P i -> K x -> K (op (F i) x)) : + K (\big[op/idx]_(i <- r | P i) F i). +Proof. by rewrite unlock; elim: r => //= i r; case: ifP => //; apply: Kop. Qed. + +Hypothesis Kop : forall x y, K x -> K y -> K (op x y). +Lemma big_ind I r (P : pred I) F (K_F : forall i, P i -> K (F i)) : + K (\big[op/idx]_(i <- r | P i) F i). +Proof. by apply: big_rec => // i x /K_F /Kop; apply. Qed. + +Hypothesis Kop' : forall x y, K x -> K y -> op x y = op' x y. +Lemma eq_big_op I r (P : pred I) F (K_F : forall i, P i -> K (F i)) : + \big[op/idx]_(i <- r | P i) F i = \big[op'/idx]_(i <- r | P i) F i. +Proof. +by elim/(big_load K): _; elim/big_rec2: _ => // i _ y Pi [Ky <-]; auto. +Qed. + +Hypotheses (fM : {morph f : x y / op x y}) (f_id : f idx = idx). +Lemma big_endo I r (P : pred I) F : + f (\big[op/idx]_(i <- r | P i) F i) = \big[op/idx]_(i <- r | P i) f (F i). +Proof. exact: big_morph. Qed. + +End Elim1. + +Arguments big_rec [R] K [idx op] _ [I r P F]. +Arguments big_ind [R] K [idx op] _ _ [I r P F]. +Arguments eq_big_op [R] K [idx op] op' _ _ _ [I]. +Arguments big_endo [R] f [idx op] _ _ [I]. + +(* zmodp -------------------------------------------------------------------- *) + +Lemma ord1 : all_equal_to (@Ordinal 1 0 is_true_true : 'I_1). +Admitted. diff --git a/test-suite/prerequisite/ssr_ssrsyntax1.v b/test-suite/prerequisite/ssr_ssrsyntax1.v new file mode 100644 index 000000000..2b404e2de --- /dev/null +++ b/test-suite/prerequisite/ssr_ssrsyntax1.v @@ -0,0 +1,36 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(*