aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Abstract/NProperties.v
Commit message (Collapse)AuthorAge
* Update headers.Gravatar Maxime Dénès2015-01-12
|
* Arith: full integration of the "Numbers" modular frameworkGravatar Pierre Letouzey2014-07-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - The earlier proof-of-concept file NPeano (which instantiates the "Numbers" framework for nat) becomes now the entry point in the Arith lib, and gets renamed PeanoNat. It still provides an inner module "Nat" which sums up everything about type nat (functions, predicates and properties of them). This inner module Nat is usable as soon as you Require Import Arith, or just Arith_base, or simply PeanoNat. - Definitions of operations over type nat are now grouped in a new file Init/Nat.v. This file is meant to be used without "Import", hence providing for instance Nat.add or Nat.sqrt as soon as coqtop starts (but no proofs about them). - The definitions that used to be in Init/Peano.v (pred, plus, minus, mult) are now compatibility notations (for Nat.pred, Nat.add, Nat.sub, Nat.mul where here Nat is Init/Nat.v). - This Coq.Init.Nat module (with only pure definitions) is Include'd in the aforementioned Coq.Arith.PeanoNat.Nat. You might see Init.Nat sometimes instead of just Nat (for instance when doing "Print plus"). Normally it should be ok to just ignore these "Init" since Init.Nat is included in the full PeanoNat.Nat. I'm investigating if it's possible to get rid of these "Init" prefixes. - Concerning predicates, orders le and lt are still defined in Init/Peano.v, with their notations "<=" and "<". Properties in PeanoNat.Nat directly refer to these predicates in Peano. For instantation reasons, PeanoNat.Nat also contains a Nat.le and Nat.lt (defined via "Definition le := Peano.le", we cannot yet include an Inductive to implement a Parameter), but these aliased predicates won't probably be very convenient to use. - Technical remark: I've split the previous property functor NProp in two parts (NBasicProp and NExtraProp), it helps a lot for building PeanoNat.Nat incrementally. Roughly speaking, we have the following schema: Module Nat. Include Coq.Init.Nat. (* definition of operations : add ... sqrt ... *) ... (** proofs of specifications for basic ops such as + * - *) Include NBasicProp. (** generic properties of these basic ops *) ... (** proofs of specifications for advanced ops (pow sqrt log2...) that may rely on proofs for + * - *) Include NExtraProp. (** all remaining properties *) End Nat. - All other files in directory Arith are now taking advantage of PeanoNat : they are now filled with compatibility notations (when earlier lemmas have exact counterpart in the Nat module) or lemmas with one-line proofs based on the Nat module. All hints for database "arith" remain declared in these old-style file (such as Plus.v, Lt.v, etc). All the old-style files are still Require'd (or not) by Arith.v, just as before. - Compatibility should be almost complete. For instance in the stdlib, the only adaptations were due to .ml code referring to some Coq constant name such as Coq.Init.Peano.pred, which doesn't live well with the new compatibility notations.
* Updating headers.Gravatar herbelin2012-08-08
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers and bitwise functions.Gravatar letouzey2010-12-06
| | | | | | | | | | | | | | | | | | | | | | | See NatInt/NZBits.v for the common axiomatization of bitwise functions over naturals / integers. Some specs aren't pretty, but easier to prove, see alternate statements in property functors {N,Z}Bits. Negative numbers are considered via the two's complement convention. We provide implementations for N (in Ndigits.v), for nat (quite dummy, just for completeness), for Z (new file Zdigits_def), for BigN (for the moment partly by converting to N, to be improved soon) and for BigZ. NOTA: For BigN.shiftl and BigN.shiftr, the two arguments are now in the reversed order (for consistency with the rest of the world): for instance BigN.shiftl 1 10 is 2^10. NOTA2: Zeven.Zdiv2 is _not_ doing (Zdiv _ 2), but rather (Zquot _ 2) on negative numbers. For the moment I've kept it intact, and have just added a Zdiv2' which is truly equivalent to (Zdiv _ 2). To reorganize someday ? git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13689 85f007b7-540e-0410-9357-904b9bb8a0f7
* Integer division: quot and rem (trunc convention) in addition to div and modGravatar letouzey2010-11-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (floor convention). We follow Haskell naming convention: quot and rem are for Round-Toward-Zero (a.k.a Trunc, what Ocaml, C, Asm do by default, cf. the ex-ZOdiv file), while div and mod are for Round-Toward-Bottom (a.k.a Floor, what Coq does historically in Zdiv). We use unicode ÷ for quot, and infix rem for rem (which is actually remainder in full). This way, both conventions can be used at the same time. Definitions (and proofs of specifications) for div mod quot rem are migrated in a new file Zdiv_def. Ex-ZOdiv file is now Zquot. With this new organisation, no need for functor application in Zdiv and Zquot. On the abstract side, ZAxiomsSig now provides div mod quot rem. Zproperties now contains properties of them. In NZDiv, we stop splitting specifications in Common vs. Specific parts. Instead, the NZ specification is be extended later, even if this leads to a useless mod_bound_pos, subsumed by more precise axioms. A few results in ZDivTrunc and ZDivFloor are improved (sgn stuff). A few proofs in Nnat, Znat, Zabs are reworked (no more dependency to Zmin, Zmax). A lcm (least common multiple) is derived abstractly from gcd and division (and hence available for nat N BigN Z BigZ :-). In these new files NLcm and ZLcm, we also provide some combined properties of div mod quot rem gcd. We also provide a new file Zeuclid implementing a third division convention, where the remainder is always positive. This file instanciate the abstract one ZDivEucl. Operation names are ZEuclid.div and ZEuclid.modulo. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13633 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers: axiomatization, properties and implementations of gcdGravatar letouzey2010-11-05
| | | | | | | | | | | | | | | | | | | - For nat, we create a brand-new gcd function, structural in the sense of Coq, even if it's Euclid algorithm. Cool... - We re-organize the Zgcd that was in Znumtheory, create out of it files Pgcd, Ngcd_def, Zgcd_def. Proofs of correctness are revised in order to be much simpler (no omega, no advanced lemmas of Znumtheory, etc). - Abstract Properties NZGcd / ZGcd / NGcd could still be completed, for the moment they contain up to Gauss thm. We could add stuff about (relative) primality, relationship between gcd and div,mod, or stuff about parity, etc etc. - Znumtheory remains as it was, apart for Zgcd and correctness proofs gone elsewhere. We could later take advantage of ZGcd in it. Someday, we'll have to switch from the current Zdivide inductive, to Zdivide' via exists. To be continued... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13623 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers : log2. Abstraction, properties and implementations.Gravatar letouzey2010-11-02
| | | | | | | | | | Btw, we finally declare the original Zpower as the power on Z. We should switch to a more efficient one someday, but in the meantime BigN is proved with respect to the old one. TODO: reform Zlogarithm with respect to Zlog_def git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13606 85f007b7-540e-0410-9357-904b9bb8a0f7
* Add sqrt in NumbersGravatar letouzey2010-10-19
| | | | | | | | | | | | | | | | | | | | | | As for power recently, we add a specification in NZ,N,Z, derived properties, implementations for nat, N, Z, BigN, BigZ. - For nat, this sqrt is brand new :-), cf NPeano.v - For Z, we rework what was in Zsqrt: same algorithm, no more refine but a pure function, based now on a sqrt for positive, from which we derive a Nsqrt and a Zsqrt. For the moment, the old Zsqrt.v file is kept as Zsqrt_compat.v. It is not loaded by default by Require ZArith. New definitions are now in Psqrt.v, Zsqrt_def.v and Nsqrt_def.v - For BigN, BigZ, we changed the specifications to refer to Zsqrt instead of using characteristic inequations. On the way, many extensions, in particular BinPos (lemmas about order), NZMulOrder (results about squares) git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13564 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers: new functions pow, even, odd + many reorganisationsGravatar letouzey2010-10-14
| | | | | | | | | | | | | | | | | | | | | | | | - Simplification of functor names, e.g. ZFooProp instead of ZFooPropFunct - The axiomatisations of the different fonctions are now in {N,Z}Axioms.v apart for Z division (three separate flavours in there own files). Content of {N,Z}AxiomsSig is extended, old version is {N,Z}AxiomsMiniSig. - In NAxioms, the recursion field isn't that useful, since we axiomatize other functions and not define them (apart in the toy NDefOps.v). We leave recursion there, but in a separate NAxiomsFullSig. - On Z, the pow function is specified to behave as Zpower : a^(-1)=0 - In BigN/BigZ, (power:t->N->t) is now pow_N, while pow is t->t->t These pow could be more clever (we convert 2nd arg to N and use pow_N). Default "^" is now (pow:t->t->t). BigN/BigZ ring is adapted accordingly - In BigN, is_even is now even, its spec is changed to use Zeven_bool. We add an odd. In BigZ, we add even and odd. - In ZBinary (implem of ZAxioms by ZArith), we create an efficient Zpow to implement pow. This Zpow should replace the current linear Zpower someday. - In NPeano (implem of NAxioms by Arith), we create pow, even, odd functions, and we modify the div and mod functions for them to be linear, structural, tail-recursive. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13546 85f007b7-540e-0410-9357-904b9bb8a0f7
* Updated all headers for 8.3 and trunkGravatar herbelin2010-07-24
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13323 85f007b7-540e-0410-9357-904b9bb8a0f7
* Remove the svn-specific $Id$ annotationsGravatar letouzey2010-04-29
| | | | | | | | | | | - Many of them were broken, some of them after Pierre B's rework of mli for ocamldoc, but not only (many bad annotation, many files with no svn property about Id, etc) - Useless for those of us that work with git-svn (and a fortiori in a forthcoming git-only setting) - Even in svn, they seem to be of little interest git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12972 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers: properties of min/max with respect to 0,S,P,add,sub,mulGravatar letouzey2010-02-09
| | | | | | | | | With these properties, we can kill Arith/MinMax, NArith/Nminmax, and leave ZArith/Zminmax as a compatibility file only. Now the instanciations NPeano.Nat, NBinary.N, ZBinary.Z, BigZ, BigN contains all theses facts. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12718 85f007b7-540e-0410-9357-904b9bb8a0f7
* Include can accept both Module and Module TypeGravatar letouzey2010-01-07
| | | | | | | | Syntax Include Type is still active, but deprecated, and triggers a warning. The syntax M <+ M' <+ M'', which performs internally an Include, also benefits from this: M, M', M'' can be independantly modules or module type. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12640 85f007b7-540e-0410-9357-904b9bb8a0f7
* Patch on subtyping check of opaque constants.Gravatar soubiran2010-01-06
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12631 85f007b7-540e-0410-9357-904b9bb8a0f7
* Numbers abstract layer: more Module Type, used especially for divisions.Gravatar letouzey2010-01-05
| | | | | | | Properties are now rather passed as functor arg instead of via Include or some inner modules. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12629 85f007b7-540e-0410-9357-904b9bb8a0f7
* Simplification of Numbers, mainly thanks to IncludeGravatar letouzey2009-11-10
- No more nesting of Module and Module Type, we rather use Include. - Instead of in-name-qualification like NZeq, we use uniform short names + modular qualification like N.eq when necessary. - Many simplification of proofs, by some autorewrite for instance - In NZOrder, we instantiate an "order" tactic. - Some requirements in NZAxioms were superfluous: compatibility of le, min and max could be derived from the rest. - NMul removed, since it was containing only an ad-hoc result for ZNatPairs, that we've inlined in the proof of mul_wd there. - Zdomain removed (was already not compiled), idea of a module with eq and eqb reused in DecidableType.BooleanEqualityType. - ZBinDefs don't contain any definition now, migrate it to ZBinary. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12489 85f007b7-540e-0410-9357-904b9bb8a0f7