| Commit message (Collapse) | Author | Age |
|
|
|
|
| |
We move the "flag types" to its use place, and mark some arguments
with named parameters better.
|
|
|
|
|
| |
- move_location to proofs/logic.
- intro_pattern_naming to Namegen.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We remove most of what was deprecated in `Term`. Now, `intf` and
`kernel` are almost deprecation-free, tho I am not very convinced
about the whole `Term -> Constr` renaming but I'm afraid there is no
way back.
Inconsistencies with the constructor policy (see #6440) remain along
the code-base and I'm afraid I don't see a plan to reconcile them.
The `Sorts` deprecation is hard to finalize, opening `Sorts` is not a
good idea as someone added a `List` module inside it.
|
|
|
|
|
|
|
|
|
|
| |
`Vernacexpr` lives conceptually higher than `proof`, however,
datatypes for bullets and goal selectors are in `Vernacexpr`.
In particular, we move:
- `proof_bullet`: to `Proof_bullet`
- `goal_selector`: to a new file `Goal_select`
|
|
|
|
|
|
|
|
|
|
|
|
| |
We add a [SelectAlreadyFocused] constructor to [goal_selector] (read
"!") which causes a failure when there's not exactly 1 goal and
otherwise is a noop.
Then [Set Default Goal Selector "!".] puts us in "strict focusing"
mode where we can only run tactics if we have only one goal or use a
selector.
Closes #6689.
|
| |
|
|
|
|
|
|
| |
We bootstrap the circular evar_map <-> econstr dependency by moving
the internal EConstr.API module to Evd.MiniEConstr. Then we make the
Evd functions use econstr.
|
|
|
|
|
|
| |
Design choice: Failing with an anomaly or with a catchable Ltac error
"Fail": we fail with a Fail as it was the case with the related
constrained version of tclTHENFIRST/tclTHENLAST.
|
|
|
|
|
|
|
|
|
|
|
| |
We continue with the work of #402 and #6745 and update most of the
remaining parts of the AST:
- module declarations
- intro patterns
- top-level sentences
Now, parsed documents should be full annotated by `CAst` nodes.
|
|\ |
|
| |
| |
| |
| | |
Noticed by Sigurd Schneider.
|
|/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In current code, `Proofview.Goal.t` uses a phantom type to indicate
whether the goal was properly substituted wrt current `evar_map` or
not.
After the introduction of `EConstr`, this distinction should have
become unnecessary, thus we remove the phantom parameter from
`'a Proofview.Goal.t`. This may introduce some minor incompatibilities
at the typing level. Code-wise, things should remain the same.
We thus deprecate `assume`. In a next commit, we will remove
normalization as much as possible from the code.
|
|
|
|
| |
We do up to `Term` which is the main bulk of the changes.
|
|
|
|
| |
This will allow to merge back `Names` with `API.Names`
|
|
|
|
| |
This is a first step towards some of the solutions proposed in #6008.
|
| |
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Reminder of (some of) the reasons for removal:
- Despite the claim in sigma.mli, it does *not* prevent evar
leaks, something like:
fun env evd ->
let (evd',ev) = new_evar env evd in
(evd,ev)
will typecheck even with Sigma-like type annotations (with a proof of
reflexivity)
- The API stayed embryonic. Even typing functions were not ported to
Sigma.
- Some unsafe combinators (Unsafe.tclEVARS) were replaced with slightly
less unsafe ones (e.g. s_enter), but those ones were not marked unsafe
at all (despite still being so).
- There was no good story for higher order functions manipulating evar
maps. Without higher order, one can most of the time get away with
reusing the same name for the updated evar map.
- Most of the code doing complex things with evar maps was using unsafe
casts to sigma. This code should be fixed, but this is an orthogonal
issue.
Of course, this was showing a nice and elegant use of GADTs, but the
cost/benefit ratio in practice did not seem good.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As per https://github.com/coq/coq/pull/716#issuecomment-305140839
Partially using
```bash
git grep --name-only 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*[^\.!]")' | xargs sed s'/\(anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*\s*[^\.! ]\)\s*")/\1.")/g' -i
```
and
```bash
git grep --name-only ' !"' | xargs sed s'/ !"/!"/g' -i
```
The rest were manually edited by looking at the results of
```bash
git grep anomaly | grep '\.ml' | grep -v 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp\.\)\?(\(\(Pp.\)\?str\)\?\s*".*\(\.\|!\)")' | grep 'anomaly\($\|[^_]\)' | less
```
|
| |
| |
| |
| | |
This fixes Théo's bug on eset.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is the continuation of #244, we now deprecate `CErrors.error`,
the single entry point in Coq is `user_err`.
The rationale is to allow for easier grepping, and to ease a future
cleanup of error messages. In particular, we would like to
systematically classify all error messages raised by Coq and be sure
they are properly documented.
We restore the two functions removed in #244 to improve compatibility,
but mark them deprecated.
|
|\ \ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This completes the Loc.ghost removal, the idea is to gear the API
towards optional, but uniform, location handling.
We don't print <unknown> anymore in the case there is no location.
This is what the test suite expects.
The old printing logic for located items was a bit inconsistent as
it sometimes printed <unknown> and other times it printed nothing as
the caller checked for `is_ghost` upstream.
|
| | |
| | |
| | |
| | | |
Now it is a private field, locations are optional.
|
| | |
| | |
| | |
| | |
| | |
| | | |
The current implementation was still using continuation passing-style, and
furthermore was triggering a focus on the goals. We take advantage of the
tactic features instead.
|
| | |
| | |
| | |
| | |
| | |
| | | |
The only remaining use was applied on the unfold tactic, and the behaviours
of tclPROGRESS and tclWEAK_PROGRESS coincide whenever only one goal is produced
by their argument tactic.
|
|/ /
| |
| |
| | |
The only use in Equality is reimplemented in the new engine.
|
| |
| |
| |
| |
| |
| | |
The transition has been done a bit brutally. I think we can still save a
lot of useless normalizations here and there by providing the right API
in EConstr. Nonetheless, this is a first step.
|
|\ \ |
|
| | |
| | |
| | |
| | |
| | | |
Now they are useless because all of the primitives are (should?) be
evar-insensitive.
|
| | |
| | |
| | |
| | |
| | |
| | | |
This removes quite a few unsafe casts. Unluckily, I had to reintroduce
the old non-module based names for these data structures, because I could
not reproduce easily the same hierarchy in EConstr.
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
|/ / |
|
|\| |
|
| |
| |
| |
| |
| | |
There was a catch-all clause in the tclORELSE0 function. We now only
catch noncritical exceptions.
|
| | |
|
| | |
|
|\ \ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
composition operator.
Short story:
This pull-request:
(1) removes the definition of the "right-to-left" function composition operator
(2) adds the definition of the "left-to-right" function composition operator
(3) rewrites the code relying on "right-to-left" function composition to rely on "left-to-right" function composition operator instead.
Long story:
In mathematics, function composition is traditionally denoted with ∘ operator.
Ocaml standard library does not provide analogous operator under any name.
Batteries Included provides provides two alternatives:
_ % _
and
_ %> _
The first operator one corresponds to the classical ∘ operator routinely used in mathematics.
I.e.:
(f4 % f3 % f2 % f1) x ≜ (f4 ∘ f3 ∘ f2 ∘ f1) x
We can call it "right-to-left" composition because:
- the function we write as first (f4) will be called as last
- and the function write as last (f1) will be called as first.
The meaning of the second operator is this:
(f1 %> f2 %> f3 %> f4) x ≜ (f4 ∘ f3 ∘ f2 ∘ f1) x
We can call it "left-to-right" composition because:
- the function we write as first (f1) will be called first
- and the function we write as last (f4) will be called last
That is, the functions are written in the same order in which we write and read them.
I think that it makes sense to prefer the "left-to-right" variant because
it enables us to write functions in the same order in which they will be actually called
and it thus better fits our culture
(we read/write from left to right).
|
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
mainly concerning referring to "Context.{Rel,Named}.get_{id,value,type}" functions.
If multiple modules define a function with a same name, e.g.:
Context.{Rel,Named}.get_type
those calls were prefixed with a corresponding prefix
to make sure that it is obvious which function is being called.
|