aboutsummaryrefslogtreecommitdiffhomepage
path: root/library/heads.ml
Commit message (Collapse)AuthorAge
* Getting rid of the const_proj field in the kernel.Gravatar Pierre-Marie Pédrot2018-06-17
| | | | | | This field used to signal that a constant was the compatibility eta-expansion of a primitive projections, but since a previous cleanup in the kernel it had become useless.
* Reduce circular dependency constants <-> projectionsGravatar Gaëtan Gilbert2018-05-31
| | | | | Instead of having the projection data in the constant data we have it independently in the environment.
* Update headers following #6543.Gravatar Théo Zimmermann2018-02-27
|
* [api] Deprecate Term destructors, move to ConstrGravatar Emilio Jesus Gallego Arias2017-11-22
| | | | | | | We mirror the structure of EConstr and move the destructors from `Term` to `Constr`. This is a step towards having a single module for `Constr`.
* [api] Move structures deprecated in the API to the core.Gravatar Emilio Jesus Gallego Arias2017-11-06
| | | | We do up to `Term` which is the main bulk of the changes.
* [api] Deprecate all legacy uses of Names in core.Gravatar Emilio Jesus Gallego Arias2017-11-06
| | | | This will allow to merge back `Names` with `API.Names`
* Safer API for Global.body_of_constant and variants.Gravatar Pierre-Marie Pédrot2017-07-13
| | | | | We aditionally return the abstract universe context inside the option. This is relatively painless as most uses were using the option as a boolean.
* Moving the last bits of abtraction-breaking code out of the kernel.Gravatar Pierre-Marie Pédrot2017-07-11
|
* Bump year in headers.Gravatar Pierre-Marie Pédrot2017-07-04
|
* Use Names.Constant.printGravatar Jason Gross2017-06-02
| | | | As per https://github.com/coq/coq/pull/716#discussion_r119963405
* Drop '.' from CErrors.anomaly, insert it in argsGravatar Jason Gross2017-06-02
| | | | | | | | | | | | | | | | | As per https://github.com/coq/coq/pull/716#issuecomment-305140839 Partially using ```bash git grep --name-only 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*[^\.!]")' | xargs sed s'/\(anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp.\)\?(\(\(Pp.\)\?str\)\?\s*".*\s*[^\.! ]\)\s*")/\1.")/g' -i ``` and ```bash git grep --name-only ' !"' | xargs sed s'/ !"/!"/g' -i ``` The rest were manually edited by looking at the results of ```bash git grep anomaly | grep '\.ml' | grep -v 'anomaly\s*\(~label:"[^"]*"\s*\)\?\(Pp\.\)\?(\(\(Pp.\)\?str\)\?\s*".*\(\.\|!\)")' | grep 'anomaly\($\|[^_]\)' | less ```
* errors.ml renamed into cErrors.ml (avoid clash with an OCaml compiler-lib ↵Gravatar Pierre Letouzey2016-07-03
| | | | | | module) For the moment, there is an Error module in compilers-lib/ocamlbytecomp.cm(x)a
* CLEANUP: Context.{Rel,Named}.Declaration.tGravatar Matej Kosik2016-02-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Originally, rel-context was represented as: Context.rel_context = Names.Name.t * Constr.t option * Constr.t Now it is represented as: Context.Rel.t = LocalAssum of Names.Name.t * Constr.t | LocalDef of Names.Name.t * Constr.t * Constr.t Originally, named-context was represented as: Context.named_context = Names.Id.t * Constr.t option * Constr.t Now it is represented as: Context.Named.t = LocalAssum of Names.Id.t * Constr.t | LocalDef of Names.Id.t * Constr.t * Constr.t Motivation: (1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction" function which looked like this: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [_,None,c] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc Suppose that you do not know about rel-context and named-context. (that is the case of people who just started to read the source code) Merlin would tell you that the type of the value you are destructing by "match" is: 'a * 'b option * Constr.t (* worst-case scenario *) or Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *) To me, this is akin to wearing an opaque veil. It is hard to figure out the meaning of the values you are looking at. In particular, it is hard to discover the connection between the value we are destructing above and the datatypes and functions defined in the "kernel/context.ml" file. In this case, the connection is there, but it is not visible (between the function above and the "Context" module). ------------------------------------------------------------------------ Now consider, what happens when the reader see the same function presented in the following form: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc If the reader haven't seen "LocalAssum" before, (s)he can use Merlin to jump to the corresponding definition and learn more. In this case, the connection is there, and it is directly visible (between the function above and the "Context" module). (2) Also, if we already have the concepts such as: - local declaration - local assumption - local definition and we describe these notions meticulously in the Reference Manual, then it is a real pity not to reinforce the connection of the actual code with the abstract description we published.
* Update copyright headers.Gravatar Maxime Dénès2016-01-20
|
* Avoid type checking private_constants (side_eff) again during Qed (#4357).Gravatar Enrico Tassi2015-10-28
| | | | | | | | | | | | | | | | | | | | | Side effects are now an opaque data type, called private_constant, you can only obtain from safe_typing. When add_constant is called on a definition_entry that contains private constants, they are either - inlined in the main proof term but not re-checked - declared globally without re-checking them As a safety measure, the opaque data type contains a pointer to the revstruct (an internal field of safe_env that changes every time a new constant is added), and such pointer is compared with the current value store in safe_env when the private_constant is inlined. Only when the comparison is successful the private_constant is not re-checked. Otherwise else it is. In short, we accept into the kernel private constant only when they arrive in the very same order and on top of the very same env they arrived when we fist checked them. Note: private_constants produced by workers never pass the safety measure (the revstruct pointer is an Ephemeron). Sending back the entire revstruct is possible but: 1. we lack a way to quickly compare two revstructs, 2. it can be large.
* Update headers.Gravatar Maxime Dénès2015-01-12
|
* library/opaqueTables: enable their use in interactive modeGravatar Enrico Tassi2014-10-13
| | | | | | | | | | | | | | Before this patch opaque tables were only growing, making them unusable in interactive mode (leak on Undo). With this patch the opaque tables are functional and part of the env. I.e. a constant_body can point to the proof term in 2 ways: 1) directly (before the constant is discharged) 2) indirectly, via an int, that is mapped by the opaque table to the proof term. This is now consistent in batch/interactive mode This is step 0 to make an interactive coqtop able to dump a .vo/.vi
* Add a boolean to indicate the unfolding state of a primitive projection,Gravatar Matthieu Sozeau2014-09-27
| | | | | | | | so as to reproduce correctly the reduction behavior of existing projections, i.e. delta + iota. Make [projection] an abstract datatype in Names.ml, most of the patch is about using that abstraction. Fix unification.ml which tried canonical projections too early in presence of primitive projections.
* Removing dead code.Gravatar Pierre-Marie Pédrot2014-06-17
|
* heads: avoid forcing opaque proofsGravatar Enrico Tassi2014-05-15
|
* This commit adds full universe polymorphism and fast projections to Coq.Gravatar Matthieu Sozeau2014-05-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add [Polymorphic] and [Monomorphic] local flag for definitions as well as [Set Universe Polymorphism] global flag to make all following definitions polymorphic. Mainly syntax for now. First part of the big changes to the kernel: - Const, Ind, Construct now come with a universe level instance - It is used for type inference in the kernel, which now also takes a graph as input: actually a set of local universe variables and their constraints. Type inference just checks that the constraints are enough to satisfy its own rules. - Remove polymorphic_arity and _knowing_parameters everywhere: we don't need full applications for polymorphism to apply anymore, as we generate fresh variables at each constant/inductive/constructor application. However knowing_parameters variants might be reinstated later for optimization. - New structures exported in univ.mli: - universe_list for universe level instances - universe_context(_set) for the local universe constraints, also recording which variables will be local and hence generalized after inference if defining a polymorphic ind/constant. - this patch makes coq stop compiling at indtypes.ml Adapt kernel, library, pretyping, tactics and toplevel to universe polymorphism. Various degrees of integration, places where I was not sure what to do or just postponed bigger reorganizations of the code are marked with FIXMEs. Main changes: - Kernel now checks constraints and does not infer them anymore. - The inference functions produce a context of constraints that were checked during inference, useful to do double-checking of the univ. poly. code but might be removed later. - Constant, Inductive entries now have a universe context (local variables and constraints) associated to them. - Printing, debugging functions for the new structures are also implemented. - Now stopping at Logic.v - Lots of new code in kernel/univ.ml that should be reviewed. - kernel/indtypes probably does not do what's right when inferring inductive type constraints. - Adapted evd to use the new universe context structure. - Did not deal with unification/evar_conv. - Add externalisation code for universe level instances. - Support for polymorphism in pretyping/command and proofs/proofview etc. Needed wrapping of [fresh_.._instance] through the evar_map, which contains the local state of universes during type-checking. - Correct the inductive scheme generation to support polymorphism as well. - Have to review kernel code for correctness, and especially rework the computation of universe constraints for inductives. Stops somewhat later in Logic.v - Fix naming of local/toplevel universes to be correctly done at typechecking time: local variables have no dirpath. - Add code to do substitution of universes in modules, not finished yet. - Move fresh_* functions out of kernel, it won't ever build a universe level again! - Adapt a lot of new_Type to use the correct dirpath and declare the new types in the evar_map so we keep track of them. - A bit of code factorization (evd_comb moved, pretype_global). - Refactor more code - Adapt plugins code (sometimes wrong, marked with FIXME) - Fix cases generating unneeded universe (not sure it's ok though) - Fix scheme generation for good, might have opportunity to cleanup the terms later. Init compiles now (which means rewrite, inversion, elim etc.. work as well). - Unsolved issue of pretyping to lower sorts properly (to Prop for example). This has to do with the (Retyping.get_type_of) giving algebraic universes that would appear on the right of constraints. This makes checking for dangling universes at the end of pretyping fail, hence the check in kernel/univ was removed. It should come back when we have a fix for this. - Correctly (?) compute the levels of inductive types. Removed old code pertaining to universe polymorphism. Note that we generate constraint variables for the conclusion of inductive types invariably. - Shrink constraints before going to the kernel, combine substitution of the smaller universe set with normalization of evars (maybe not done everywhere, only ordinary inductives, definitions and proofs) - More API reworks overall. tclPUSHCONTEXT can be used to add fresh universes to the proof goal (used in a few places to get the right instance. - Quick fix for auto that won't work in the long run. It should always have been restricted to take constant references as input, without any loss of generality over constrs. Fix some plugins and insertion of non-polymorphic constants in a module. Now stops in relation classes. Cleanup and move code from kernel to library and from pretyping to library too. Now there is a unique universe counter declared in library/universes.ml along with all the functions to generate new universes and get fresh constant/inductive terms. - Various function renamings - One important change in kernel/univ.ml: now [sup] can be applied to Prop. - Adapt records/classes to universe polymorphism - Now stops in EqDepFacts due to imprecise universe polymorphism. Forgot to git add those files. interp_constr returns the universe context The context is then pushed through the environment (or proof goal sigma). - Fix insertion of constants/inductives in env, pushing constraints to the global env for non-polymorphic ones. - Add Prop as a universe level to do proper type inference with sorts. It is allowed to take [sup] of [Prop] now. - New nf_evar based on new Evd.map(_undefined) - In proofs/logic.ml: conv_leq_goal might create some constraints that are now recorded. - Adapt Program code to universes. Merge with latest trunk + fixes -Use new constr_of_global from universes - fix eqschemes to use polymorphic universes - begin fixing cctac but f_equal still fails - fix [simpl] and rest of tacred - all the eq_constr with mkConst foo should be fixed as well, only partially done - Fix term hashing function to recognize equal terms up to universe instances. - Fix congruence closure to equate terms that differ only in universe instances, these will be resolved by constraints. Add a set of undefined universe variables to unification. Universe variables can now be declared rigid or flexible (unifiable). Flexible variables are resolved at the end of typechecking by instantiating them to their glb, adding upper bound constraints associated to them. Also: - Add polymorphic flag for inductives. - Fix cooking partially - Fix kernel/univ.ml to do normalization of universe expressions at the end of substitution. Correct classes/structures universe inference - Required a bit of extension in Univ to handle Max properly (sup u (u+1)) was returning (max(u,u+1)) for example. - Try a version where substitution of universe expressions for universe levels is allowed at the end of unification. By an invariant this should only instantiate with max() types that are morally "on the right" only. This is controlled using a rigidity attribute of universe variables, also allowing to properly do unification w.r.t. universes during typechecking/inference. - Currently fails in Vectors/Fin.v because case compilation generates "flexible" universes that actually appear in the term... Fix unification of universe variables. - Fix choice of canonical universe in presence of universe constraints, and do so by relying on a trichotomy for universe variables: rigid (won't be substituted), flexible (might be if not substituted by an algebraic) and flexible_alg (always substituted). - Fix romega code and a few more plugins, most of the standard library goes through now. - Had to define some inductives as Polymorphic explicitly to make proofs go through, more to come, and definitions should be polymorphic too, otherwise inconsistencies appear quickly (two uses of the same polymorphic ind through monomorphic functions (like nth on lists of Props and nats) will fix the monomorphic function's universe with eq constraints that are incompatible). - Correct universe polymorphism handling for fixpoint/cofixpoint definitions. - Fix romega to use the right universes for list constructors. - Fix internalization/externalization to deal properly with the implicit parsing of params. - Fix fourier tactic w.r.t. GRefs - Fix substitution saturation of universes. - Fix number syntax plugin. - Fix setoid_ring to take its coefficients in a Set rather than a Type, avoiding a large number of useless universe constraints. - Fix minor checker decl - Fix btauto w.r.t. GRef - Fix proofview to normalize universes in the original types as well. - Fix definitions of projections to not take two universes at the same level, but at different levels instead, avoiding unnecessary constraints that could lower the level of one component depending on the use of the other component. Fix simpl fst, snd to use @fst @snd as they have maximal implicits now. - More simpl snd, fst fixes. - Try to make the nth theory of lists polymorphic. Check with Enrico if this change is ok. Case appearing in RingMicromega's call to congruence l417, through a call to refine -> the_conv_x_leq. Compile everything. - "Fix" checker by deactivating code related to polymorphism, should be updated. - Make most of List.v polymorphic to help with following definitions. - When starting a lemma, normalize w.r.t. universes, so that the types get a fixed universe, not refinable later. - In record, don't assign a fully flexible universe variable to the record type if it is a definitional typeclass, as translate_constant doesn't expect an algebraic universe in the type of a constant. It certainly should though. - Fix micromega code. Fix after rebase. Update printing functions to print the polymorphic status of definitions and their universe context. Refine printing of universe contexts - Fix printer for universe constraints - Rework normalization of constraints to separate the Union-Find result from computation of lubs/glbs. Keep universe contexts of inductives/constants in entries for correct substitution inside modules. Abstract interface to get an instantiation of an inductive with its universe substitution in the kernel (no substitution if the inductive is not polymorphic, even if mind_universes is non-empty). Make fst and snd polymorphic, fix instances in RelationPairs to use different universes for the two elements of a pair. - Fix bug in nf_constraints: was removing Set <= constraints, but should remove Prop <= constraints only. - Make proj1_sig, projT1... polymorphic to avoid weird universe unifications, giving rise to universe inconsistenties. Adapt auto hints to polymorphic references. Really produce polymorphic hints... second try - Remove algebraic universes that can't appear in the goal when taking the type of a lemma to start. Proper handling of universe contexts in clenv and auto so that polymorphic hints are really refreshed at each application. Fix erroneous shadowing of sigma variable. - Make apparent the universe context used in pretyping, including information about flexibility of universe variables. - Fix induction to generate a fresh constant instance with flexible universe variables. Add function to do conversion w.r.t. an evar map and its local universes. - Fix define_evar_as_sort to not forget constraints coming from the refinement. - Do not nf_constraints while we don't have the whole term at hand to substitute in. - Move substitution of full universes to Universes - Normalize universes inside an evar_map when doing nf_evar_map_universes. - Normalize universes at each call to interp_ltac (potentially expensive) Do not normalize all evars at each call to interp_gen in tactics: rather incrementally normalize the terms at hand, supposing the normalization of universes will concern only those appearing in it (dangerous but much more efficient). Do not needlessly generate new universes constraints for projections of records. Correct polymorphic discharge of section variables. Fix autorewrite w.r.t. universes: polymorphic rewrite hints get fresh universe instances at each application. Fix r2l rewrite scheme to support universe polymorphism Fix a bug in l2r_forward scheme and fix congruence scheme to handle polymorphism correctly. Second try at fixing autorewrite, cannot do without pushing the constraints and the set of fresh universe variables into the proof context. - tclPUSHCONTEXT allow to set the ctx universe variables as flexible or rigid - Fix bug in elimschemes, not taking the right sigma Wrong sigma used in leibniz_rewrite Avoid recomputation of bounds for equal universes in normalization of constraints, only the canonical one need to be computed. Make coercions work with universe polymorphic projections. Fix eronneous bound in universes constraint solving. Make kernel reduction and term comparison strictly aware of universe instances, with variants for relaxed comparison that output constraints. Otherwise some constraints that should appear during pretyping don't and we generate unnecessary constraints/universe variables. Have to adapt a few tactics to this new behavior by making them universe aware. - Fix elimschemes to minimize universe variables - Fix coercions to not forget the universe constraints generated by an application - Change universe substitutions to maps instead of assoc lists. - Fix absurd tactic to handle univs properly - Make length and app polymorphic in List, unification sets their levels otherwise. Move to modules for namespace management instead of long names in universe code. More putting things into modules. Change evar_map structure to support an incremental substitution of universes (populated from Eq constraints), allowing safe and fast inference of precise levels, without computing lubs. - Add many printers and reorganize code - Extend nf_evar to normalize universe variables according to the substitution. - Fix ChoiceFacts.v in Logic, no universe inconsistencies anymore. But Diaconescu still has one (something fixes a universe to Set). - Adapt omega, functional induction to the changes. Fix congruence, eq_constr implem, discharge of polymorphic inductives. Fix merge in auto. The [-parameters-matter] option (formerly relevant_equality). Add -parameters-matter to coqc Do compute the param levels at elaboration time if parameters_matter. - Fix generalize tactic - add ppuniverse_subst - Start fixing normalize_universe_context w.r.t. normalize_univ_variables. - Fix HUGE bug in Ltac interpretation not folding the sigma correctly if interpreting a tactic application to multiple arguments. - Fix bug in union of universe substitution. - rename parameters-matter to indices-matter - Fix computation of levels from indices not parameters. - Fixing parsing so that [Polymorphic] can be applied to gallina extensions. - When elaborating definitions, make the universes from the type rigid when checking the term: they should stay abstracted. - Fix typeclasses eauto's handling of universes for exact hints. Rework all the code for infering the levels of inductives and checking their allowed eliminations sorts. This is based on the computation of a natural level for an inductive type I. The natural level [nat] of [I : args -> sort := c1 : A1 -> I t1 .. cn : An -> I tn] is computed by taking the max of the levels of the args (if indices matter) and the levels of the constructor arguments. The declared level [decl] of I is [sort], which might be Prop, Set or some Type u (u fresh or not). If [decl >= nat && not (decl = Prop && n >= 2)], the level of the inductive is [decl], otherwise, _smashing_ occured. If [decl] is impredicative (Prop or Set when Set is impredicative), we accept the declared level, otherwise it's an error. To compute the allowed elimination sorts, we have the following situations: - No smashing occured: all sorts are allowed. (Recall props that are not smashed are Empty/Unitary props) - Some smashing occured: - if [decl] is Type, we allow all eliminations (above or below [decl], not sure why this is justified in general). - if [decl] is Set, we used smashing for impredicativity, so only small sorts are allowed (Prop, Set). - if [decl] is Prop, only logical sorts are allowed: I has either large universes inside it or more than 1 constructor. This does not treat the case where only a Set appeared in I which was previously accepted it seems. All the standard library works with these changes. Still have to cleanup kernel/indtypes.ml. It is a good time to have a whiskey with OJ. Thanks to Peter Lumsdaine for bug reporting: - fix externalisation of universe instances (still appearing when no Printing Universes) - add [convert] and [convert_leq] tactics that keep track of evars and universe constraints. - use them in [exact_check]. Fix odd behavior in inductive type declarations allowing to silently lower a Type i parameter to Set for squashing a naturally Type i inductive to Set. Reinstate the LargeNonPropInductiveNotInType exception. Fix the is_small function not dealing properly with aliases of Prop/Set in Type. Add check_leq in Evd and use it to decide if we're trying to squash an inductive naturally in some Type to Set. - Fix handling of universe polymorphism in typeclasses Class/Instance declarations. - Don't allow lowering a rigid Type universe to Set silently. - Move Ring/Field back to Type. It was silently putting R in Set due to the definition of ring_morph. - Rework inference of universe levels for inductive definitions. - Make fold_left/right polymorphic on both levels A and B (the list's type). They don't have to be at the same level. Handle selective Polymorphic/Monomorphic flag right for records. Remove leftover command Fix after update with latest trunk. Backport patches on HoTT/coq to rebased version of universe polymorphism. - Fix autorewrite wrong handling of universe-polymorphic rewrite rules. Fixes part of issue #7. - Fix the [eq_constr_univs] and add an [leq_constr_univs] to avoid eager equation of universe levels that could just be inequal. Use it during kernel conversion. Fixes issue #6. - Fix a bug in unification that was failing too early if a choice in unification of universes raised an inconsistency. - While normalizing universes, remove Prop in the le part of Max expressions. - Stop rigidifying the universes on the right hand side of a : in definitions. - Now Hints can be declared polymorphic or not. In the first case they must be "refreshed" (undefined universes are renamed) at each application. - Have to refresh the set of universe variables associated to a hint when it can be used multiple times in a single proof to avoid fixing a level... A better & less expensive solution should exist. - Do not include the levels of let-ins as part of records levels. - Fix a NotConvertible uncaught exception to raise a more informative error message. - Better substitution of algebraics in algebraics (for universe variables that can be algebraics). - Fix issue #2, Context was not properly normalizing the universe context. - Fix issue with typeclasses that were not catching UniverseInconsistencies raised by unification, resulting in early failure of proof-search. - Let the result type of definitional classes be an algebraic. - Adapt coercions to universe polymorphic flag (Identity Coercion etc..) - Move away a dangerous call in autoinstance that added constraints for every polymorphic definitions once in the environment for no use. Forgot one part of the last patch on coercions. - Adapt auto/eauto to polymorphic hints as well. - Factor out the function to refresh a clenv w.r.t. undefined universes. Use leq_univ_poly in evarconv to avoid fixing universes. Disallow polymorphic hints based on a constr as it is not possible to infer their universe context. Only global references can be made polymorphic. Fixes issue #8. Fix SearchAbout bug (issue #10). Fix program w.r.t. universes: the universe context of a definition changes according to the successive refinements due to typechecking obligations. This requires the Proof modules to return the generated universe substitution when finishing a proof, and this information is passed in the closing hook. The interface is not very clean, will certainly change in the future. - Better treatment of polymorphic hints in auto: terms can be polymorphic now, we refresh their context as well. - Needs a little change in test-pattern that seems breaks multiary uses of destruct in NZDiv.v, l495. FIX to do. Fix [make_pattern_test] to keep the universe information around and still allow tactics to take multiple patterns at once. - Fix printing of universe instances that should not be factorized blindly - Fix handling of the universe context in program definitions by allowing the hook at the end of an interactive proof to give back the refined universe context, before it is transformed in the kernel. - Fix a bug in evarconv where solve_evar_evar was not checking types of instances, resulting in a loss of constraints in unification of universes and a growing number of useless parametric universes. - Move from universe_level_subst to universe_subst everywhere. - Changed representation of universes for a canonical one - Adapt the code so that universe variables might be substituted by arbitrary universes (including algebraics). Not used yet except for polymorphic universe variables instances. - Adapt code to new constraint structure. - Fix setoid rewrite handling of evars that was forgetting the initial universe substitution ! - Fix code that was just testing conversion instead of keeping the resulting universe constraints around in the proof engine. - Make a version of reduction/fconv that deals with the more general set of universe constraints. - [auto using] should use polymorphic versions of the constants. - When starting a proof, don't forget about the algebraic universes in the universe context. Rationalize substitution and normalization functions for universes. Also change back the structure of universes to avoid considering levels n+k as pure levels: they are universe expressions like max. Everything is factored out in the Universes and Univ modules now and the normalization functions can be efficient in the sense that they can cache the normalized universes incrementally. - Adapt normalize_context code to new normalization/substitution functions. - Set more things to be polymorphic, e.g. in Ring or SetoidList for the rest of the code to work properly while the constraint generation code is not adapted. And temporarily extend the universe constraint code in univ to solve max(is) = max(js) by first-order unification (these constraints should actually be implied not enforced). - Fix romega plugin to use the right universes for polymorphic lists. - Fix auto not refreshing the poly hints correctly. - Proper postponing of universe constraints during unification, avoid making arbitrary choices. - Fix nf_evars_and* to keep the substitution around for later normalizations. - Do add simplified universe constraints coming from unification during typechecking. - Fix solve_by_tac in obligations to handle universes right, and the corresponding substitution function. Test global universe equality early during simplication of constraints. Better hashconsing, but still not good on universe lists. - Add postponing of "lub" constraints that should not be checked early, they are implied by the others. - Fix constructor tactic to use a fresh constructor instance avoiding fixing universes. - Use [eq_constr_universes] instead of [eq_constr_univs] everywhere, this is the comparison function that doesn't care about the universe instances. - Almost all the library compiles in this new setting, but some more tactics need to be adapted. - Reinstate hconsing. - Keep Prop <= u constraints that can be used to set the level of a universe metavariable. Add better hashconsing and unionfind in normalisation of constraints. Fix a few problems in choose_canonical, normalization and substitution functions. Fix after merge Fixes after rebase with latest Coq trunk, everything compiles again, albeit slowly in some cases. - Fix module substitution and comparison of table keys in conversion using the wrong order (should always be UserOrd now) - Cleanup in universes, removing commented code. - Fix normalization of universe context which was assigning global levels to local ones. Should always be the other way! - Fix universe implementation to implement sorted cons of universes preserving order. Makes Univ.sup correct again, keeping universe in normalized form. - In evarconv.ml, allow again a Fix to appear as head of a weak-head normal form (due to partially applied fixpoints). - Catch anomalies of conversion as errors in reductionops.ml, sad but necessary as eta-expansion might build ill-typed stacks like FProd, [shift;app Rel 1], as it expands not only if the other side is rigid. - Fix module substitution bug in auto.ml - Fix case compilation: impossible cases compilation was generating useless universe levels. Use an IDProp constant instead of the polymorphic identity to not influence the level of the original type when building the case construct for the return type. - Simplify normalization of universe constraints. - Compute constructor levels of records correctly. Fall back to levels for universe instances, avoiding issues of unification. Add more to the test-suite for universe polymorphism. Fix after rebase with trunk Fix substitution of universes inside fields/params of records to be made after all normalization is done and the level of the record has been computed. Proper sharing of lower bounds with fixed universes. Conflicts: library/universes.ml library/universes.mli Constraints were not enforced in compilation of cases Fix after rebase with trunk - Canonical projections up to universes - Fix computation of class/record universe levels to allow squashing to Prop/Set in impredicative set mode. - Fix descend_in_conjunctions to properly instantiate projections with universes - Avoid Context-bound variables taking extra universes in their associated universe context. - Fix evar_define using the wrong direction when refreshing a universe under cumulativity - Do not instantiate a local universe with some lower bound to a global one just because they have the same local glb (they might not have the same one globally). - Was loosing some global constraints during normalization (brought again by the kernel), fixed now. - Proper [abstract] with polymorphic lemmas (polymorphic if the current proof is). - Fix silly bug in autorewrite: any hint after the first one was always monomorphic. - Fix fourier after rebase - Refresh universes when checking types of metas in unification (avoid (sup (sup univ))). - Speedup a script in FSetPositive.v Rework definitions in RelationClasses and Morphisms to share universe levels as much as possible. This factorizes many useless x <= RelationClasses.foo constraints in code that uses setoid rewriting. Slight incompatible change in the implicits for Reflexivity and Irreflexivity as well. - Share even more universes in Morphisms using a let. - Use splay_prod instead of splay_prod_assum which doesn't reduce let's to find a relation in setoid_rewrite - Fix [Declare Instance] not properly dealing with let's in typeclass contexts. Fixes in inductiveops, evarutil. Patch by Yves Bertot to allow naming universes in inductive definitions. Fixes in tacinterp not propagating evars correctly. Fix for issue #27: lowering a Type to Prop is allowed during inference (resulting in a Type (* Set *)) but kernel reduction was wrongly refusing the equation [Type (*Set*) = Set]. Fix in interface of canonical structures: an instantiated polymorphic projection is not needed to lookup a structure, just the projection name is enough (reported by C. Cohen). Move from universe inference to universe checking in the kernel. All tactics have to be adapted so that they carry around their generated constraints (living in their sigma), which is mostly straightforward. The more important changes are when refering to Coq constants, the tactics code is adapted so that primitive eq, pairing and sigma types might be polymorphic. Fix another few places in tacinterp and evarconv/evarsolve where the sigma was not folded correctly. - Fix discharge adding spurious global constraints on polymorphic universe variables appearing in assumptions. - Fixes in inductiveops not taking into account universe polymorphic inductives. WIP on checked universe polymorphism, it is clearly incompatible with the previous usage of polymorphic inductives + non-polymorphic definitions on them as universe levels now appear in the inductive type, and add equality constraints between universes that were otherwise just in a cumulativity relation (not sure that was actually correct). Refined version of unification of universe instances for first-order unification, prefering unfolding to arbitrary identification of universes. Moved kernel to universe checking only. Adapt the code to properly infer constraints during typechecking and refinement (tactics) and only check constraints when adding constants/inductives to the environment. Exception made of module subtyping that needs inference of constraints... The kernel conversion (fconv) has two modes: checking only and inference, the later being used by modules only. Evarconv/unification make use of a different strategy for conversion of constants that prefer unfolding to blind unification of rigid universes. Likewise, conversion checking backtracks on different universe instances (modulo the constraints). - adapt congruence/funind/ring plugins to this new mode, forcing them to declare their constraints. - To avoid big performance penalty with reification, make ring/field non-polymorphic (non-linear explosion in run time to be investigated further). - pattern and change tactics need special treatment: as they are not _reduction_ but conversion functions, their operation requires to update an evar_map with new universe constraints. - Fix vm_compute to work better with universes. If the normal form is made only of constructors then the readback is correct. However a deeper change will be needed to treat substitution of universe instances when unfolding constants. Remove libtypes.ml Fix after merge. Fix after rebase with trunk. **** Add projections to the kernel, as optimized implementations of constants. - New constructor Proj expects a projection constant applied to its principal inductive argument. - Reduction machines shortcut the expansion to a case and directly project the right argument. - No need to keep parameters as part of the projection's arguments as they are inferable from the type of the principal argument. - ML code now compiles, debugging needed. Start debugging the implementation of projections. Externalisation should keep the information about projections. Internalization, pattern-matching, unification and reduction of projections. Fix some code that used to have _ for parameters that are no longer present in projections. Fixes in unification, reduction, term indexing, auto hints based on projections, add debug printers. Fix byte-compilation of projections, unification, congruence with projections. Adapt .v files using "@proj _ _ record" syntax, should come back on this later. Fix coercion insertion code to properly deal with projection coercions. Fix [simpl proj]... TODO [unfold proj], proj is not considered evaluable. - Fix whnf of projections, now respecting opacity information. - Fix conversion of projections to try first-order first and then incrementally unfold them. - Fix computation of implicit args for projections, simply dropping the information for parameters. - Fix a few scripts that relied on projections carrying their parameters (few at's, rewrites). - Fix unify_with_subterm to properly match under projections. - Fix bug in cooking of projections. - Add pattern PProj for projections. - A very strange bug appeared in BigZ.v, making coqtop segfault on the export of BigN... tofix Fixes after rebase with trunk. Everything compiles now, with efficient projections. Fixes after rebase with trunk (esp. reductionops). Remove warnings, backport patch from old univs+projs branch. Proper expansion of projections during unification. They are considered as maybe flexible keys in evarconv/unification. We try firstorder unification and otherwise expand them as necessary, completely mimicking the original behavior, when they were constants. Fix head_constr_bound interface, the arguments are never needed (they're outside their environment actually). [simpl] and [red]/[intro] should behave just like before now. Fix evarconv that was giving up on proj x = ?e problems too early. - Port patch by Maxime Denes implementing fast projections in the native conversion. - Backport patch to add eta-expansion for records. Do not raise an exception but simply fails if trying to do eta on an inductive that is not a record. Fix projections detyping/matching and unification.ml not always recovering on first-order universe inequalities. Correct eta-expansion for records, and change strategy for conversion with projections to favor reduction over first-order unification a little more. Fix a bug in Ltac pattern matching on projections. Fix evars_reset_evd to not recheck existing constraints in case it is just an update (performance improvement for typeclass resolution). - Respect Global/Transparent oracle during unification. Opaque means _never_ unfolded there. - Add empty universes as well as the initial universes (having Prop < Set). - Better display of universe inconsistencies. - Add Beta Ziliani's patch to go fast avoiding imitation when possible. - Allow instantiation by lower bound even if there are universes above - (tentative) In refinement, avoid incremental refinement of terms containing no holes and do it in one step (much faster on big terms). Turned on only if not a checked command. Remove dead code in univ/universes.ml and cleanup setup of hashconsing, for a small speed and memory footprint improvement. - Fix bug in unification using cumulativity when conversion should have been used. - Fix unification of evars having type Type, no longer forcing them to be equal (potentially more constraints): algorithm is now complete w.r.t. cumulativity. - In clenvtac, use refine_nocheck as we are guaranteed to get well-typed terms from unification now, including sufficient universe constraints. Small general speedup. - Fix inference of universe levels of inductive types to avoid smashing inadvertently from Set to Prop. - Fix computation of discharged hypotheses forgetting the arity in inductives. - Fix wrong order in printing of universe inconsistency explanation - Allow coercions between two polymorphic instances of the same inductive/constant. - Do evar normalization and saturation by classes before trying to use program coercion during pretyping. - In unification, force equalities of universes when unifying the same rigid head constants. - Fix omission of projections in constr_leq - Fix [admit] tactic's handling of normalized universes. Fix typing of projections not properly normalizing w.r.t. evars, resulting in anomaly sometimes. Adapt rewrite to work with computational relations (in Type), while maintaining backward compatibility with Propositional rewriting. Introduce a [diff] function on evar maps and universe contexts to properly deal with clause environments. Local hints in auto now store just the extension of the evar map they rely on, so merging them becomes efficient. This fixes an important performance issue in auto and typeclass resolution in presence of a large number of universe constraints. Change FSetPositive and MSetPositive to put their [elt] and [t] universes in Type to avoid restricting global universes to [Set]. This is due to [flip]s polymorphic type being fixed in monomorphic instances of Morphisms.v, and rewriting hence forcing unification of levels that could be left unrelated. - Try a fast_typeops implementation of kernel type inference that allocates less by not rebuilding the term, shows a little performance improvement, and less allocation. - Build universe inconsistency explanations lazily, avoiding huge blowup (x5) in check_constraints/merge_constraints in time and space (these are stressed in universe polymorphic mode). - Hashcons universe instances. Add interface file for fast_typeops Use monomorphic comparisons, little optimizations of hashconsing and comparison in univ.ml. Fix huge slowdown due to building huge error messages. Lazy is not enough to tame this completely. Fix last performance issue, due to abstracts building huge terms abstracting on parts of the section context. Was due to wrong handling of Let... Qed.s in abstract. Performance is a tiny bit better than the trunk now. First step at compatibility layer for projections. Compatibility mode for projections. c.(p), p c use primitive projs, while @p refers to an expansion [λ params c, c.(p)]. Recovers almost entire source compatibility with trunk scripts, except when mixing @p and p and doing syntactic matching (they're unifiable though). Add a [Set Primitive Projections] flag to set/unset the use of primitive projections, selectively for each record. Adapt code to handle both the legacy encoding and the primitive projections. Library is almost source-to-source compatible, except for syntactic operations relying on the presence of parameters. In primitive projections mode, @p refers to an expansion [λ params r. p.(r)]. More information in CHANGES (to be reformated/moved to reference manual). Backport changes from HoTT/coq: - Fix anomaly on uncatched NotASort in retyping. - Better recognition of evars that are subject to typeclass resolution. Fixes bug reported by J. Gross on coq-club. - Print universe polymorphism information for parameters as well. Fix interface for unsatisfiable constraints error, now a type error. Try making ring polymorphic again, with a big slowdown, to be investigated. Fix evar/universe leak in setoid rewrite. - Add profiling flag - Move setoid_ring back to non-polymorphic mode to compare perfs with trunk - Change unification to allow using infer_conv more often (big perf culprit), but semantics of backtracking on unification of constants is not properly implemented there. - Fix is_empty/union_evar_universe_context forgetting about some assignments. - Performance is now very close to the trunk from june, with projections deactivated.
* Fixing a Pervasive.compare.Gravatar Pierre-Marie Pédrot2014-02-28
|
* Get rid of the uses of deprecated OCaml elements (still remaining compatible ↵Gravatar xclerc2013-09-19
| | | | | | with OCaml 3.12.1). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16787 85f007b7-540e-0410-9357-904b9bb8a0f7
* Splitting Term into five unrelated interfaces:Gravatar ppedrot2013-04-29
| | | | | | | | | | | | | | | | | 1. sorts.ml: A small file utility for sorts; 2. constr.ml: Really low-level terms, essentially kind_of_constr, smart constructor and basic operators; 3. vars.ml: Everything related to term variables, that is, occurences and substitution; 4. context.ml: Rel/Named context and all that; 5. term.ml: derived utility operations on terms; also includes constr.ml up to some renaming, and acts as a compatibility layer, to be deprecated. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16462 85f007b7-540e-0410-9357-904b9bb8a0f7
* code simplifications concerning SummaryGravatar letouzey2013-04-22
| | | | | | | | | | | | | | | - Most of the time, the table registered via Summary.declare_summary is just a single reference. A new function Summary.ref now allows to both declare this ref and register it to summary in one shot. - Clarifications concerning the role of [init_function]. For statically registered tables that don't need a special initializer, just do nothing there (see the new Summary.nop function). Beware: now that Summary exports a function named "ref", any code that do an "open Summary" will probably fail to compile. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16441 85f007b7-540e-0410-9357-904b9bb8a0f7
* Minor code cleaning in CArray / CList.Gravatar ppedrot2013-03-23
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16351 85f007b7-540e-0410-9357-904b9bb8a0f7
* Fixed bug #2966 (de Bruijn error in computation of heads for coercions).Gravatar herbelin2013-01-28
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16168 85f007b7-540e-0410-9357-904b9bb8a0f7
* Monomorphization (library)Gravatar ppedrot2012-11-22
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15993 85f007b7-540e-0410-9357-904b9bb8a0f7
* Moving Utils.list_* to a proper CList module, which includes stdlibGravatar ppedrot2012-09-14
| | | | | | | | | List module. That way, an "open Util" in the header permits using any function of CList in the List namespace (and in particular, this permits optimized reimplementations of the List functions, as, for example, tail-rec implementations. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15801 85f007b7-540e-0410-9357-904b9bb8a0f7
* This patch removes unused "open" (automatically generated fromGravatar regisgia2012-09-14
| | | | | | | | | | compiler warnings). I was afraid that such a brutal refactoring breaks some obscure invariant about linking order and side-effects but the standard library still compiles. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15800 85f007b7-540e-0410-9357-904b9bb8a0f7
* Updating headers.Gravatar herbelin2012-08-08
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15715 85f007b7-540e-0410-9357-904b9bb8a0f7
* global_reference migrated from Libnames to new Globnames, less deps in ↵Gravatar letouzey2012-05-29
| | | | | | grammar.cma git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15384 85f007b7-540e-0410-9357-904b9bb8a0f7
* Noise for nothingGravatar pboutill2012-03-02
| | | | | | | | | | | Util only depends on Ocaml stdlib and Utf8 tables. Generic pretty printing and loc functions are in Pp. Generic errors are in Errors. + Training white-spaces, useless open, prlist copies random erasure. Too many "open Errors" on the contrary. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@15020 85f007b7-540e-0410-9357-904b9bb8a0f7
* Add type annotations around all calls to Libobject.declare_objectGravatar letouzey2011-11-02
| | | | | | | | | | | | | | | | | These annotations are purely optional, but could be quite helpful when trying to understand the code, and in particular trying to trace which which data-structure may end in the libobject part of a vo. By the way, we performed some code simplifications : - in Library, a part of the REQUIRE objects was unused. - in Declaremods, we removed some checks that were marked as useless, this allows to slightly simplify the stored objects. To investigate someday : in recordops, the RECMETHODS is storing some evar_maps. This is ok for the moment, but might not be in the future (cf previous commit on auto hints). This RECMETHODS was not detected by my earlier tests : not used in the stdlib ? git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14627 85f007b7-540e-0410-9357-904b9bb8a0f7
* Heads: avoid potentially uncaught Not_found via an assert falseGravatar letouzey2011-10-24
| | | | | | | | | | The underlying issue (#2608) should be fixed now. In case something similar happens again, we won't be chasing again a Not_found here. Same idea as commit r14550, but this initial attempt was too zealous: we shouldn't also "protect" variable_head, since a Not_found in it is handled a few lines later. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14588 85f007b7-540e-0410-9357-904b9bb8a0f7
* Temporary revert commit 14550 since it breaks a few contribsGravatar letouzey2011-10-12
| | | | | | | | | | | Interestingly, it appears that the Not_found in heads.ml is actually triggered in some contribs, but catched. Maybe a "try" tactical ? Are these Not_found another effects of bug #2608 or something similar ? Anyway, replacing Not_found by "assert false" currently breaks these contribs. So for the moment, we revert to the original code. When bug #2608 will have been solved, we'll try again enabling these "assert false". git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14560 85f007b7-540e-0410-9357-904b9bb8a0f7
* in heads.ml, at least turn the Not_found of #2608 into assert falseGravatar letouzey2011-10-11
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14550 85f007b7-540e-0410-9357-904b9bb8a0f7
* Heads: generic equality on constr replaced by destructorGravatar puech2011-07-29
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@14331 85f007b7-540e-0410-9357-904b9bb8a0f7
* Some dead code removal, thanks to Oug analyzerGravatar letouzey2010-09-24
| | | | | | | | | | In particular, the unused lib/tlm.ml and lib/gset.ml are removed In addition, to simplify code, Libobject.record_object returning only the ('a->obj) function, which is enough almost all the time. Use Libobject.record_object_full if you really need also the (obj->'a). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13460 85f007b7-540e-0410-9357-904b9bb8a0f7
* Updated all headers for 8.3 and trunkGravatar herbelin2010-07-24
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@13323 85f007b7-540e-0410-9357-904b9bb8a0f7
* Remove the svn-specific $Id$ annotationsGravatar letouzey2010-04-29
| | | | | | | | | | | - Many of them were broken, some of them after Pierre B's rework of mli for ocamldoc, but not only (many bad annotation, many files with no svn property about Id, etc) - Useless for those of us that work with git-svn (and a fortiori in a forthcoming git-only setting) - Even in svn, they seem to be of little interest git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12972 85f007b7-540e-0410-9357-904b9bb8a0f7
* This big commit addresses two problems:Gravatar soubiran2009-10-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1- Management of the name-space in a modular development / sharing of non-logical objects. 2- Performance of atomic module operations (adding a module to the environment, subtyping ...). 1- There are 3 module constructions which derive equalities on fields from a module to another: Let P be a module path and foo a field of P Module M := P. Module M. Include P. ... End M. Declare Module K : S with Module M := P. In this 3 cases we don't want to be bothered by the duplication of names. Of course, M.foo delta reduce to P.foo but many non-logical features of coq do not work modulo conversion (they use eq_constr or constr_pat object). To engender a transparent name-space (ie using P.foo or M.foo is the same thing) we quotient the name-space by the equivalence relation on names induced by the 3 constructions above. To implement this, the types constant and mutual_inductive are now couples of kernel_names. The first projection correspond to the name used by the user and the second projection to the canonical name, for example the internal name of M.foo is (M.foo,P.foo). So: ************************************************************************************* * Use the eq_(con,mind,constructor,gr,egr...) function and not = on names values * ************************************************************************************* Map and Set indexed on names are ordered on user name for the kernel side and on canonical name outside. Thus we have sharing of notation, hints... for free (also for a posteriori declaration of them, ex: a notation on M.foo will be avaible on P.foo). If you want to use this, use the appropriate compare function defined in name.ml or libnames.ml. 2- No more time explosion (i hoppe) when using modules i have re-implemented atomic module operations so that they are all linear in the size of the module. We also have no more unique identifier (internal module names) for modules, it is now based on a section_path like mechanism => we have less substitutions to perform at require, module closing and subtyping but we pre-compute more information hence if we instanciate several functors then we have bigger vo. Last thing, the checker will not work well on vo(s) that contains one of the 3 constructions above, i will work on it soon... git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12406 85f007b7-540e-0410-9357-904b9bb8a0f7
* Remove useless Liboject.export_function fieldGravatar glondu2009-09-17
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12338 85f007b7-540e-0410-9357-904b9bb8a0f7
* Delete trailing whitespaces in all *.{v,ml*} filesGravatar glondu2009-09-17
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12337 85f007b7-540e-0410-9357-904b9bb8a0f7
* Death of "survive_module" and "survive_section" (the first one wasGravatar herbelin2009-08-13
| | | | | | | | | | only used to allow a module to be ended before the summaries were restored what can be solved by moving upwards the place where the summaries are restored). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12275 85f007b7-540e-0410-9357-904b9bb8a0f7
* - Cleaning phase of the interfaces of libnames.ml and nametab.mlGravatar herbelin2009-08-06
| | | | | | | | | | | | | | | (uniformisation of function names, classification). One of the most visible change is the renaming of section_path into full_path (the use of name section was obsolete due to the module system, but I don't know if the new name is the best chosen one - especially it remains some "sp" here and there). - Simplification of the interface of classify_object (first argument dropped). - Simplification of the code for vernac keyword "End". - Other small cleaning or dead code removal. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12265 85f007b7-540e-0410-9357-904b9bb8a0f7
* Some dead code removal + cleanupsGravatar letouzey2009-04-08
| | | | | | | | | | | | | | This commit concerns about the first half of the useless code mentionned by Oug for coqtop (without plugins). For the moment, Oug is used in a mode where any elements mentionned in a .mli is considered to be precious. This already allows to detect and remove about 600 lines, and more is still to come. Among the interesting points, the type Entries.specification_entry and its constructors SPExxx were never used. Large parts of cases.ml (and hence subtac_cases.ml) were also useless. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@12069 85f007b7-540e-0410-9357-904b9bb8a0f7
* Correct implementation of discharging of implicit arguments and add newGravatar msozeau2008-07-22
| | | | | | | | | setting "Set Manual Implicit Arguments" for manual-only implicits. Fix test-suite script. This removes the discharge_info argument of "dynamic" object's rebuild function. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@11242 85f007b7-540e-0410-9357-904b9bb8a0f7
* Ajout propriété svn:keywords aux nouveaux fichiers du commit 10840Gravatar herbelin2008-04-24
| | | | | | | | (~/.subversion/config n'avait pas la ligne magique "* = svn:keywords=Author Date Id Revision" dans la section [auto-props]). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10841 85f007b7-540e-0410-9357-904b9bb8a0f7
* Prise en compte des coercions dans les clauses "with" même si le typeGravatar herbelin2008-04-23
de l'argument donné contient des métavariables (souhait #1408). Beaucoup d'infrastructure autour des constantes pour cela mais qu'on devrait pouvoir récupérer pour analyser plus finement le comportement des constantes en général : 1- Pour insérer les coercions, on utilise une transformation (expérimentale) de Metas vers Evars le temps d'appeler coercion.ml. 2- Pour la compatibilité, on s'interdit d'insérer une coercion entre classes flexibles parce que sinon l'insertion de coercion peut prendre précédence sur la résolution des evars ce qui peut changer les comportements (comme dans la preuve de fmg_cs_inv dans CFields de CoRN). 3- Pour se souvenir rapidement de la nature flexible ou rigide du symbole de tête d'une constante vis à vis de l'évaluation, on met en place une table associant à chaque constante sa constante de tête (heads.ml) 4- Comme la table des constantes de tête a besoin de connaître l'opacité des variables de section, la partie tables de declare.ml va dans un nouveau decls.ml. Au passage, simplification de coercion.ml, correction de petits bugs (l'interface de Gset.fold n'était pas assez générale; specialize cherchait à typer un terme dans un mauvais contexte d'evars [tactics.ml]; whd_betaiotazeta avait un argument env inutile [reduction.ml, inductive.ml]) et nettoyage (declare.ml, decl_kinds.ml, avec incidence sur class.ml, classops.ml et autres ...; uniformisation noms tables dans autorewrite.ml). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@10840 85f007b7-540e-0410-9357-904b9bb8a0f7