aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/declareops.ml
Commit message (Collapse)AuthorAge
* Adding a default safe set of kernel typing flags to Declareops.Gravatar Pierre-Marie Pédrot2016-06-16
|
* Merge PR #79: Let the kernel assume that a (co-)inductive type is positive.Gravatar Pierre-Marie Pédrot2016-06-16
|\
| * Assume totality: dedicated type rather than boolGravatar Arnaud Spiwack2016-06-14
| | | | | | | | | | | | | | The rational is that 1. further typing flags may be available in the future 2. it makes it easier to trace and document the argument
* | CLEANUP: Simplifying the changes done in "kernel/*"Gravatar Matej Kosik2016-02-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ... ... ... ... ... ... ... ... ... ... ... ... ... ...
* | CLEANUP: Context.{Rel,Named}.Declaration.tGravatar Matej Kosik2016-02-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Originally, rel-context was represented as: Context.rel_context = Names.Name.t * Constr.t option * Constr.t Now it is represented as: Context.Rel.t = LocalAssum of Names.Name.t * Constr.t | LocalDef of Names.Name.t * Constr.t * Constr.t Originally, named-context was represented as: Context.named_context = Names.Id.t * Constr.t option * Constr.t Now it is represented as: Context.Named.t = LocalAssum of Names.Id.t * Constr.t | LocalDef of Names.Id.t * Constr.t * Constr.t Motivation: (1) In "tactics/hipattern.ml4" file we define "test_strict_disjunction" function which looked like this: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [_,None,c] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc Suppose that you do not know about rel-context and named-context. (that is the case of people who just started to read the source code) Merlin would tell you that the type of the value you are destructing by "match" is: 'a * 'b option * Constr.t (* worst-case scenario *) or Named.Name.t * Constr.t option * Constr.t (* best-case scenario (?) *) To me, this is akin to wearing an opaque veil. It is hard to figure out the meaning of the values you are looking at. In particular, it is hard to discover the connection between the value we are destructing above and the datatypes and functions defined in the "kernel/context.ml" file. In this case, the connection is there, but it is not visible (between the function above and the "Context" module). ------------------------------------------------------------------------ Now consider, what happens when the reader see the same function presented in the following form: let test_strict_disjunction n lc = Array.for_all_i (fun i c -> match (prod_assum (snd (decompose_prod_n_assum n c))) with | [LocalAssum (_,c)] -> isRel c && Int.equal (destRel c) (n - i) | _ -> false) 0 lc If the reader haven't seen "LocalAssum" before, (s)he can use Merlin to jump to the corresponding definition and learn more. In this case, the connection is there, and it is directly visible (between the function above and the "Context" module). (2) Also, if we already have the concepts such as: - local declaration - local assumption - local definition and we describe these notions meticulously in the Reference Manual, then it is a real pity not to reinforce the connection of the actual code with the abstract description we published.
* | Merge branch 'v8.5'Gravatar Pierre-Marie Pédrot2016-01-21
|\ \
| * | Update copyright headers.Gravatar Maxime Dénès2016-01-20
| | |
* | | mergeGravatar Matej Kosik2016-01-11
|\ \ \
| * | | CLEANUP: kernel/context.ml{,i}Gravatar Matej Kosik2016-01-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The structure of the Context module was refined in such a way that: - Types and functions related to rel-context declarations were put into the Context.Rel.Declaration module. - Types and functions related to rel-context were put into the Context.Rel module. - Types and functions related to named-context declarations were put into the Context.Named.Declaration module. - Types and functions related to named-context were put into the Context.Named module. - Types and functions related to named-list-context declarations were put into Context.NamedList.Declaration module. - Types and functions related to named-list-context were put into Context.NamedList module. Some missing comments were added to the *.mli file. The output of ocamldoc was checked whether it looks in a reasonable way. "TODO: cleanup" was removed The order in which are exported functions listed in the *.mli file was changed. (as in a mature modules, this order usually is not random) The order of exported functions in Context.{Rel,Named} modules is now consistent. (as there is no special reason why that order should be different) The order in which are functions defined in the *.ml file is the same as the order in which they are listed in the *.mli file. (as there is no special reason to define them in a different order) The name of the original fold_{rel,named}_context{,_reverse} functions was changed to better indicate what those functions do. (Now they are called Context.{Rel,Named}.fold_{inside,outside}) The original comments originally attached to the fold_{rel,named}_context{,_reverse} did not full make sense so they were updated. Thrown exceptions are now documented. Naming of formal parameters was made more consistent across different functions. Comments of similar functions in different modules are now consistent. Comments from *.mli files were copied to *.ml file. (We need that information in *.mli files because that is were ocamldoc needs it. It is nice to have it also in *.ml files because when we are using Merlin and jump to the definion of the function, we can see the comments also there and do not need to open a different file if we want to see it.) When we invoke ocamldoc, we instruct it to generate UTF-8 HTML instead of (default) ISO-8859-1. (UTF-8 characters are used in our ocamldoc markup) "open Context" was removed from all *.mli and *.ml files. (Originally, it was OK to do that. Now it is not.) An entry to dev/doc/changes.txt file was added that describes how the names of types and functions have changed.
* | | | Remove some unused functions.Gravatar Guillaume Melquiond2016-01-02
|/ / / | | | | | | | | | | | | Note: they do not even seem to have a debugging purpose, so better remove them before they bitrot.
* / / Hashconsing modules.Gravatar Pierre-Marie Pédrot2015-11-15
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Modules inserted into the environment were not hashconsed, leading to an important redundancy, especially in module signatures that are always fully expanded. This patch divides by two the size and memory consumption of module-heavy files by hashconsing modules before putting them in the environment. Note that this is not a real hashconsing, in the sense that we only hashcons the inner terms contained in the modules, that are only mapped over. Compilation time should globally decrease, even though some files definining a lot of modules may see their compilation time increase. Some remaining overhead may persist, as for instance module inclusion is not hashconsed.
* | Avoid type checking private_constants (side_eff) again during Qed (#4357).Gravatar Enrico Tassi2015-10-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Side effects are now an opaque data type, called private_constant, you can only obtain from safe_typing. When add_constant is called on a definition_entry that contains private constants, they are either - inlined in the main proof term but not re-checked - declared globally without re-checking them As a safety measure, the opaque data type contains a pointer to the revstruct (an internal field of safe_env that changes every time a new constant is added), and such pointer is compared with the current value store in safe_env when the private_constant is inlined. Only when the comparison is successful the private_constant is not re-checked. Otherwise else it is. In short, we accept into the kernel private constant only when they arrive in the very same order and on top of the very same env they arrived when we fist checked them. Note: private_constants produced by workers never pass the safety measure (the revstruct pointer is an Ephemeron). Sending back the entire revstruct is possible but: 1. we lack a way to quickly compare two revstructs, 2. it can be large.
| * Add a field in `constant_body` to track constant whose well-foundedness is ↵Gravatar Arnaud Spiwack2015-09-25
| | | | | | | | assumed.
| * Add a field in `mutual_inductive_body` to represent mutual inductive whose ↵Gravatar Arnaud Spiwack2015-06-24
|/ | | | positivity is assumed.
* Fix vm compiler to refuse to compile code making use of inductives withGravatar Matthieu Sozeau2015-03-25
| | | | more than 245 constructors (unsupported by OCaml's runtime).
* Make native compiler handle universe polymorphic definitions.Gravatar Maxime Dénès2015-01-17
| | | | | One remaining issue: aliased constants raise an anomaly when some unsubstituted universe variables remain. VM may suffer from the same problem.
* Update headers.Gravatar Maxime Dénès2015-01-12
|
* universes_of_constant: do a proper set union of body and type univsGravatar Enrico Tassi2014-12-27
| | | | | | | | | | | Before the union was performed as a UContext.t union, that concatenates the instances arrays, while one wants to avoid duplicates. We also assert that polymorphic constants have all constraints in the constant_body (field const_universes), since the extra body univs (stored in the opaque tables) are just for regular constants processed asynchronously.
* selective join/export of the safe_environmentGravatar Enrico Tassi2014-10-13
| | | | | This generalizes the BuildVi flag and lets one choose which opaque proofs are done and which not.
* STM: simplify how the term part of a side effect is retrievedGravatar Enrico Tassi2014-10-13
| | | | | Now the seff contains it directly, no need to force the future or to hope that it is a Direct opaque proof.
* library/opaqueTables: enable their use in interactive modeGravatar Enrico Tassi2014-10-13
| | | | | | | | | | | | | | Before this patch opaque tables were only growing, making them unusable in interactive mode (leak on Undo). With this patch the opaque tables are functional and part of the env. I.e. a constant_body can point to the proof term in 2 ways: 1) directly (before the constant is discharged) 2) indirectly, via an int, that is mapped by the opaque table to the proof term. This is now consistent in batch/interactive mode This is step 0 to make an interactive coqtop able to dump a .vo/.vi
* Revert d0cd27e209be08ee51a2d609157367f053438a10: giving a different nameGravatar Matthieu Sozeau2014-10-11
| | | | | | | for the record binder of classes. This name is no longer generated in the kernel but part of the declaration. Also cleanup the interface to recognize primitive records based on an option type instead of a dynamic check of the length of an array.
* Change the way primitive projections are declared to the kernel.Gravatar Matthieu Sozeau2014-08-28
| | | | | | | | | | | Now kernel/indtypes builds the corresponding terms (has to be trusted) while translate_constant just binds a constant name to the already entered projection body, avoiding the dubious "check" of user given terms. "case" Pattern-matching on primitive records is now disallowed, and the default scheme is implemented using projections and eta (all elimination tactics now use projections as well). Elaborate "let (x, y) := p in t" using let bindings for the projections of p too.
* Move to a representation of universe polymorphic constants using indices for ↵Gravatar Matthieu Sozeau2014-08-03
| | | | | | | variables. Simplifies instantiation of constants/inductives, requiring less allocation and Map.find's. Abstraction by variables is handled mostly inside the kernel but could be moved outside.
* A tentative uniform naming policy in module Inductiveops.Gravatar Hugo Herbelin2014-08-01
| | | | | | | | | | | | - realargs: refers either to the indices of an inductive, or to the proper args of a constructor - params: refers to parameters (which are common to inductive and constructors) - allargs = params + realargs - realdecls: refers to the defining context of indices or proper args of a constructor (it includes letins) - paramdecls: refers to the defining context of params (it includes letins) - alldecls = paramdecls + realdecls
* - Do module substitution inside mind_record.Gravatar Matthieu Sozeau2014-07-25
| | | | | - Distinguish between primitive and non-primitive records in the kernel declaration, so as to try eta-conversion on primitive records only.
* Fix handling of side effects in Defined objects (Closes: HoTT#111 + 3344)Gravatar Enrico Tassi2014-06-23
| | | | Every time you use abstract a kitten dies, please stop.
* ind_tables: always declare side effects (Closes: HOTT#110)Gravatar Enrico Tassi2014-06-08
| | | | | | | | | | | | | | | | | | | | | | | | declare takes care of ignoring side effects that are available in the global environment. This is yet another instance of what the "abominion" (aka abstract) can do: the code was checking for the existence in the environment of the elimination principle, and not regenerating it (nor declaring the corresponding side effect) if the elimination principle is used twice. Of course to functionalize the imperative actions on the environment when two proofs generated by abstract use the same elim principle, such elim principle has to be inlined twice, once in each abstracted proof. In other words, a side effect generated by a tactic inside an abstract is *global* but will be made local, si it must always be declared, no matter what. Now the system works like this: - side effects are always declared, even if a caching mechanism thinks the constant is already there (it can be there, no need to regenerate it but the intent to generate it *must* be declared anyhow) - at Qed time, we filter the list of side effects and decide which ones are really needed to be inlined. bottom line: STOP using abstract.
* Reuse universe level substitutions for template polymorphism, fixing performanceGravatar Matthieu Sozeau2014-05-09
| | | | problem with hashconsing at the same time. This fixes bug# 3302.
* - Fix bug preventing apply from unfolding Fixpoints.Gravatar Matthieu Sozeau2014-05-06
| | | | | | | | | | | | | | | | | | - Remove Universe Polymorphism flags everywhere. - Properly infer, discharge template arities and fix substitution inside them (kernel code to check for correctness). - Fix tactics that were supposing universe polymorphic constants/inductives to be parametric on that status. Required to make interp_constr* return the whole evar universe context now. - Fix the univ/level/instance hashconsing to respect the fact that marshalling doesn't preserve sharing, sadly losing most of its benefits. Short-term solution is to add hashes to these for faster comparison, longer term requires rewriting all serialization code. Conflicts: kernel/univ.ml tactics/tactics.ml theories/Logic/EqdepFacts.v
* Adapt universe polymorphic branch to new handling of futures for delayed proofs.Gravatar Matthieu Sozeau2014-05-06
|
* Adapt Y. Bertot's path on private inductives (now the keyword is "Private").Gravatar Yves Bertot2014-05-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | A quick and dirty approach to private inductive types Types for which computable functions are provided, but pattern-matching is disallowed. This kind of type can be used to simulate simple forms of higher inductive types, with convertibility for applications of the inductive principle to 0-constructors Conflicts: intf/vernacexpr.mli kernel/declarations.ml kernel/declarations.mli kernel/entries.mli kernel/indtypes.ml library/declare.ml parsing/g_vernac.ml4 plugins/funind/glob_term_to_relation.ml pretyping/indrec.ml pretyping/tacred.mli printing/ppvernac.ml toplevel/vernacentries.ml Conflicts: kernel/declarations.mli kernel/declareops.ml kernel/indtypes.ml kernel/modops.ml
* - Rename eq to equal in Univ, document new modules, set interfaces.Gravatar Matthieu Sozeau2014-05-06
| | | | | | | | | | | | A try at hashconsing all universes instances seems to incur a big cost. - Do hashconsing of universe instances in constr. - Little fix in obligations w.r.t. non-polymorphic constants. Conflicts: kernel/constr.ml kernel/declareops.ml kernel/inductive.ml kernel/univ.mli
* Initial work on reintroducing old-style polymorphism for compatibility (the ↵Gravatar Matthieu Sozeau2014-05-06
| | | | stdlib does not compile entirely).
* This commit adds full universe polymorphism and fast projections to Coq.Gravatar Matthieu Sozeau2014-05-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add [Polymorphic] and [Monomorphic] local flag for definitions as well as [Set Universe Polymorphism] global flag to make all following definitions polymorphic. Mainly syntax for now. First part of the big changes to the kernel: - Const, Ind, Construct now come with a universe level instance - It is used for type inference in the kernel, which now also takes a graph as input: actually a set of local universe variables and their constraints. Type inference just checks that the constraints are enough to satisfy its own rules. - Remove polymorphic_arity and _knowing_parameters everywhere: we don't need full applications for polymorphism to apply anymore, as we generate fresh variables at each constant/inductive/constructor application. However knowing_parameters variants might be reinstated later for optimization. - New structures exported in univ.mli: - universe_list for universe level instances - universe_context(_set) for the local universe constraints, also recording which variables will be local and hence generalized after inference if defining a polymorphic ind/constant. - this patch makes coq stop compiling at indtypes.ml Adapt kernel, library, pretyping, tactics and toplevel to universe polymorphism. Various degrees of integration, places where I was not sure what to do or just postponed bigger reorganizations of the code are marked with FIXMEs. Main changes: - Kernel now checks constraints and does not infer them anymore. - The inference functions produce a context of constraints that were checked during inference, useful to do double-checking of the univ. poly. code but might be removed later. - Constant, Inductive entries now have a universe context (local variables and constraints) associated to them. - Printing, debugging functions for the new structures are also implemented. - Now stopping at Logic.v - Lots of new code in kernel/univ.ml that should be reviewed. - kernel/indtypes probably does not do what's right when inferring inductive type constraints. - Adapted evd to use the new universe context structure. - Did not deal with unification/evar_conv. - Add externalisation code for universe level instances. - Support for polymorphism in pretyping/command and proofs/proofview etc. Needed wrapping of [fresh_.._instance] through the evar_map, which contains the local state of universes during type-checking. - Correct the inductive scheme generation to support polymorphism as well. - Have to review kernel code for correctness, and especially rework the computation of universe constraints for inductives. Stops somewhat later in Logic.v - Fix naming of local/toplevel universes to be correctly done at typechecking time: local variables have no dirpath. - Add code to do substitution of universes in modules, not finished yet. - Move fresh_* functions out of kernel, it won't ever build a universe level again! - Adapt a lot of new_Type to use the correct dirpath and declare the new types in the evar_map so we keep track of them. - A bit of code factorization (evd_comb moved, pretype_global). - Refactor more code - Adapt plugins code (sometimes wrong, marked with FIXME) - Fix cases generating unneeded universe (not sure it's ok though) - Fix scheme generation for good, might have opportunity to cleanup the terms later. Init compiles now (which means rewrite, inversion, elim etc.. work as well). - Unsolved issue of pretyping to lower sorts properly (to Prop for example). This has to do with the (Retyping.get_type_of) giving algebraic universes that would appear on the right of constraints. This makes checking for dangling universes at the end of pretyping fail, hence the check in kernel/univ was removed. It should come back when we have a fix for this. - Correctly (?) compute the levels of inductive types. Removed old code pertaining to universe polymorphism. Note that we generate constraint variables for the conclusion of inductive types invariably. - Shrink constraints before going to the kernel, combine substitution of the smaller universe set with normalization of evars (maybe not done everywhere, only ordinary inductives, definitions and proofs) - More API reworks overall. tclPUSHCONTEXT can be used to add fresh universes to the proof goal (used in a few places to get the right instance. - Quick fix for auto that won't work in the long run. It should always have been restricted to take constant references as input, without any loss of generality over constrs. Fix some plugins and insertion of non-polymorphic constants in a module. Now stops in relation classes. Cleanup and move code from kernel to library and from pretyping to library too. Now there is a unique universe counter declared in library/universes.ml along with all the functions to generate new universes and get fresh constant/inductive terms. - Various function renamings - One important change in kernel/univ.ml: now [sup] can be applied to Prop. - Adapt records/classes to universe polymorphism - Now stops in EqDepFacts due to imprecise universe polymorphism. Forgot to git add those files. interp_constr returns the universe context The context is then pushed through the environment (or proof goal sigma). - Fix insertion of constants/inductives in env, pushing constraints to the global env for non-polymorphic ones. - Add Prop as a universe level to do proper type inference with sorts. It is allowed to take [sup] of [Prop] now. - New nf_evar based on new Evd.map(_undefined) - In proofs/logic.ml: conv_leq_goal might create some constraints that are now recorded. - Adapt Program code to universes. Merge with latest trunk + fixes -Use new constr_of_global from universes - fix eqschemes to use polymorphic universes - begin fixing cctac but f_equal still fails - fix [simpl] and rest of tacred - all the eq_constr with mkConst foo should be fixed as well, only partially done - Fix term hashing function to recognize equal terms up to universe instances. - Fix congruence closure to equate terms that differ only in universe instances, these will be resolved by constraints. Add a set of undefined universe variables to unification. Universe variables can now be declared rigid or flexible (unifiable). Flexible variables are resolved at the end of typechecking by instantiating them to their glb, adding upper bound constraints associated to them. Also: - Add polymorphic flag for inductives. - Fix cooking partially - Fix kernel/univ.ml to do normalization of universe expressions at the end of substitution. Correct classes/structures universe inference - Required a bit of extension in Univ to handle Max properly (sup u (u+1)) was returning (max(u,u+1)) for example. - Try a version where substitution of universe expressions for universe levels is allowed at the end of unification. By an invariant this should only instantiate with max() types that are morally "on the right" only. This is controlled using a rigidity attribute of universe variables, also allowing to properly do unification w.r.t. universes during typechecking/inference. - Currently fails in Vectors/Fin.v because case compilation generates "flexible" universes that actually appear in the term... Fix unification of universe variables. - Fix choice of canonical universe in presence of universe constraints, and do so by relying on a trichotomy for universe variables: rigid (won't be substituted), flexible (might be if not substituted by an algebraic) and flexible_alg (always substituted). - Fix romega code and a few more plugins, most of the standard library goes through now. - Had to define some inductives as Polymorphic explicitly to make proofs go through, more to come, and definitions should be polymorphic too, otherwise inconsistencies appear quickly (two uses of the same polymorphic ind through monomorphic functions (like nth on lists of Props and nats) will fix the monomorphic function's universe with eq constraints that are incompatible). - Correct universe polymorphism handling for fixpoint/cofixpoint definitions. - Fix romega to use the right universes for list constructors. - Fix internalization/externalization to deal properly with the implicit parsing of params. - Fix fourier tactic w.r.t. GRefs - Fix substitution saturation of universes. - Fix number syntax plugin. - Fix setoid_ring to take its coefficients in a Set rather than a Type, avoiding a large number of useless universe constraints. - Fix minor checker decl - Fix btauto w.r.t. GRef - Fix proofview to normalize universes in the original types as well. - Fix definitions of projections to not take two universes at the same level, but at different levels instead, avoiding unnecessary constraints that could lower the level of one component depending on the use of the other component. Fix simpl fst, snd to use @fst @snd as they have maximal implicits now. - More simpl snd, fst fixes. - Try to make the nth theory of lists polymorphic. Check with Enrico if this change is ok. Case appearing in RingMicromega's call to congruence l417, through a call to refine -> the_conv_x_leq. Compile everything. - "Fix" checker by deactivating code related to polymorphism, should be updated. - Make most of List.v polymorphic to help with following definitions. - When starting a lemma, normalize w.r.t. universes, so that the types get a fixed universe, not refinable later. - In record, don't assign a fully flexible universe variable to the record type if it is a definitional typeclass, as translate_constant doesn't expect an algebraic universe in the type of a constant. It certainly should though. - Fix micromega code. Fix after rebase. Update printing functions to print the polymorphic status of definitions and their universe context. Refine printing of universe contexts - Fix printer for universe constraints - Rework normalization of constraints to separate the Union-Find result from computation of lubs/glbs. Keep universe contexts of inductives/constants in entries for correct substitution inside modules. Abstract interface to get an instantiation of an inductive with its universe substitution in the kernel (no substitution if the inductive is not polymorphic, even if mind_universes is non-empty). Make fst and snd polymorphic, fix instances in RelationPairs to use different universes for the two elements of a pair. - Fix bug in nf_constraints: was removing Set <= constraints, but should remove Prop <= constraints only. - Make proj1_sig, projT1... polymorphic to avoid weird universe unifications, giving rise to universe inconsistenties. Adapt auto hints to polymorphic references. Really produce polymorphic hints... second try - Remove algebraic universes that can't appear in the goal when taking the type of a lemma to start. Proper handling of universe contexts in clenv and auto so that polymorphic hints are really refreshed at each application. Fix erroneous shadowing of sigma variable. - Make apparent the universe context used in pretyping, including information about flexibility of universe variables. - Fix induction to generate a fresh constant instance with flexible universe variables. Add function to do conversion w.r.t. an evar map and its local universes. - Fix define_evar_as_sort to not forget constraints coming from the refinement. - Do not nf_constraints while we don't have the whole term at hand to substitute in. - Move substitution of full universes to Universes - Normalize universes inside an evar_map when doing nf_evar_map_universes. - Normalize universes at each call to interp_ltac (potentially expensive) Do not normalize all evars at each call to interp_gen in tactics: rather incrementally normalize the terms at hand, supposing the normalization of universes will concern only those appearing in it (dangerous but much more efficient). Do not needlessly generate new universes constraints for projections of records. Correct polymorphic discharge of section variables. Fix autorewrite w.r.t. universes: polymorphic rewrite hints get fresh universe instances at each application. Fix r2l rewrite scheme to support universe polymorphism Fix a bug in l2r_forward scheme and fix congruence scheme to handle polymorphism correctly. Second try at fixing autorewrite, cannot do without pushing the constraints and the set of fresh universe variables into the proof context. - tclPUSHCONTEXT allow to set the ctx universe variables as flexible or rigid - Fix bug in elimschemes, not taking the right sigma Wrong sigma used in leibniz_rewrite Avoid recomputation of bounds for equal universes in normalization of constraints, only the canonical one need to be computed. Make coercions work with universe polymorphic projections. Fix eronneous bound in universes constraint solving. Make kernel reduction and term comparison strictly aware of universe instances, with variants for relaxed comparison that output constraints. Otherwise some constraints that should appear during pretyping don't and we generate unnecessary constraints/universe variables. Have to adapt a few tactics to this new behavior by making them universe aware. - Fix elimschemes to minimize universe variables - Fix coercions to not forget the universe constraints generated by an application - Change universe substitutions to maps instead of assoc lists. - Fix absurd tactic to handle univs properly - Make length and app polymorphic in List, unification sets their levels otherwise. Move to modules for namespace management instead of long names in universe code. More putting things into modules. Change evar_map structure to support an incremental substitution of universes (populated from Eq constraints), allowing safe and fast inference of precise levels, without computing lubs. - Add many printers and reorganize code - Extend nf_evar to normalize universe variables according to the substitution. - Fix ChoiceFacts.v in Logic, no universe inconsistencies anymore. But Diaconescu still has one (something fixes a universe to Set). - Adapt omega, functional induction to the changes. Fix congruence, eq_constr implem, discharge of polymorphic inductives. Fix merge in auto. The [-parameters-matter] option (formerly relevant_equality). Add -parameters-matter to coqc Do compute the param levels at elaboration time if parameters_matter. - Fix generalize tactic - add ppuniverse_subst - Start fixing normalize_universe_context w.r.t. normalize_univ_variables. - Fix HUGE bug in Ltac interpretation not folding the sigma correctly if interpreting a tactic application to multiple arguments. - Fix bug in union of universe substitution. - rename parameters-matter to indices-matter - Fix computation of levels from indices not parameters. - Fixing parsing so that [Polymorphic] can be applied to gallina extensions. - When elaborating definitions, make the universes from the type rigid when checking the term: they should stay abstracted. - Fix typeclasses eauto's handling of universes for exact hints. Rework all the code for infering the levels of inductives and checking their allowed eliminations sorts. This is based on the computation of a natural level for an inductive type I. The natural level [nat] of [I : args -> sort := c1 : A1 -> I t1 .. cn : An -> I tn] is computed by taking the max of the levels of the args (if indices matter) and the levels of the constructor arguments. The declared level [decl] of I is [sort], which might be Prop, Set or some Type u (u fresh or not). If [decl >= nat && not (decl = Prop && n >= 2)], the level of the inductive is [decl], otherwise, _smashing_ occured. If [decl] is impredicative (Prop or Set when Set is impredicative), we accept the declared level, otherwise it's an error. To compute the allowed elimination sorts, we have the following situations: - No smashing occured: all sorts are allowed. (Recall props that are not smashed are Empty/Unitary props) - Some smashing occured: - if [decl] is Type, we allow all eliminations (above or below [decl], not sure why this is justified in general). - if [decl] is Set, we used smashing for impredicativity, so only small sorts are allowed (Prop, Set). - if [decl] is Prop, only logical sorts are allowed: I has either large universes inside it or more than 1 constructor. This does not treat the case where only a Set appeared in I which was previously accepted it seems. All the standard library works with these changes. Still have to cleanup kernel/indtypes.ml. It is a good time to have a whiskey with OJ. Thanks to Peter Lumsdaine for bug reporting: - fix externalisation of universe instances (still appearing when no Printing Universes) - add [convert] and [convert_leq] tactics that keep track of evars and universe constraints. - use them in [exact_check]. Fix odd behavior in inductive type declarations allowing to silently lower a Type i parameter to Set for squashing a naturally Type i inductive to Set. Reinstate the LargeNonPropInductiveNotInType exception. Fix the is_small function not dealing properly with aliases of Prop/Set in Type. Add check_leq in Evd and use it to decide if we're trying to squash an inductive naturally in some Type to Set. - Fix handling of universe polymorphism in typeclasses Class/Instance declarations. - Don't allow lowering a rigid Type universe to Set silently. - Move Ring/Field back to Type. It was silently putting R in Set due to the definition of ring_morph. - Rework inference of universe levels for inductive definitions. - Make fold_left/right polymorphic on both levels A and B (the list's type). They don't have to be at the same level. Handle selective Polymorphic/Monomorphic flag right for records. Remove leftover command Fix after update with latest trunk. Backport patches on HoTT/coq to rebased version of universe polymorphism. - Fix autorewrite wrong handling of universe-polymorphic rewrite rules. Fixes part of issue #7. - Fix the [eq_constr_univs] and add an [leq_constr_univs] to avoid eager equation of universe levels that could just be inequal. Use it during kernel conversion. Fixes issue #6. - Fix a bug in unification that was failing too early if a choice in unification of universes raised an inconsistency. - While normalizing universes, remove Prop in the le part of Max expressions. - Stop rigidifying the universes on the right hand side of a : in definitions. - Now Hints can be declared polymorphic or not. In the first case they must be "refreshed" (undefined universes are renamed) at each application. - Have to refresh the set of universe variables associated to a hint when it can be used multiple times in a single proof to avoid fixing a level... A better & less expensive solution should exist. - Do not include the levels of let-ins as part of records levels. - Fix a NotConvertible uncaught exception to raise a more informative error message. - Better substitution of algebraics in algebraics (for universe variables that can be algebraics). - Fix issue #2, Context was not properly normalizing the universe context. - Fix issue with typeclasses that were not catching UniverseInconsistencies raised by unification, resulting in early failure of proof-search. - Let the result type of definitional classes be an algebraic. - Adapt coercions to universe polymorphic flag (Identity Coercion etc..) - Move away a dangerous call in autoinstance that added constraints for every polymorphic definitions once in the environment for no use. Forgot one part of the last patch on coercions. - Adapt auto/eauto to polymorphic hints as well. - Factor out the function to refresh a clenv w.r.t. undefined universes. Use leq_univ_poly in evarconv to avoid fixing universes. Disallow polymorphic hints based on a constr as it is not possible to infer their universe context. Only global references can be made polymorphic. Fixes issue #8. Fix SearchAbout bug (issue #10). Fix program w.r.t. universes: the universe context of a definition changes according to the successive refinements due to typechecking obligations. This requires the Proof modules to return the generated universe substitution when finishing a proof, and this information is passed in the closing hook. The interface is not very clean, will certainly change in the future. - Better treatment of polymorphic hints in auto: terms can be polymorphic now, we refresh their context as well. - Needs a little change in test-pattern that seems breaks multiary uses of destruct in NZDiv.v, l495. FIX to do. Fix [make_pattern_test] to keep the universe information around and still allow tactics to take multiple patterns at once. - Fix printing of universe instances that should not be factorized blindly - Fix handling of the universe context in program definitions by allowing the hook at the end of an interactive proof to give back the refined universe context, before it is transformed in the kernel. - Fix a bug in evarconv where solve_evar_evar was not checking types of instances, resulting in a loss of constraints in unification of universes and a growing number of useless parametric universes. - Move from universe_level_subst to universe_subst everywhere. - Changed representation of universes for a canonical one - Adapt the code so that universe variables might be substituted by arbitrary universes (including algebraics). Not used yet except for polymorphic universe variables instances. - Adapt code to new constraint structure. - Fix setoid rewrite handling of evars that was forgetting the initial universe substitution ! - Fix code that was just testing conversion instead of keeping the resulting universe constraints around in the proof engine. - Make a version of reduction/fconv that deals with the more general set of universe constraints. - [auto using] should use polymorphic versions of the constants. - When starting a proof, don't forget about the algebraic universes in the universe context. Rationalize substitution and normalization functions for universes. Also change back the structure of universes to avoid considering levels n+k as pure levels: they are universe expressions like max. Everything is factored out in the Universes and Univ modules now and the normalization functions can be efficient in the sense that they can cache the normalized universes incrementally. - Adapt normalize_context code to new normalization/substitution functions. - Set more things to be polymorphic, e.g. in Ring or SetoidList for the rest of the code to work properly while the constraint generation code is not adapted. And temporarily extend the universe constraint code in univ to solve max(is) = max(js) by first-order unification (these constraints should actually be implied not enforced). - Fix romega plugin to use the right universes for polymorphic lists. - Fix auto not refreshing the poly hints correctly. - Proper postponing of universe constraints during unification, avoid making arbitrary choices. - Fix nf_evars_and* to keep the substitution around for later normalizations. - Do add simplified universe constraints coming from unification during typechecking. - Fix solve_by_tac in obligations to handle universes right, and the corresponding substitution function. Test global universe equality early during simplication of constraints. Better hashconsing, but still not good on universe lists. - Add postponing of "lub" constraints that should not be checked early, they are implied by the others. - Fix constructor tactic to use a fresh constructor instance avoiding fixing universes. - Use [eq_constr_universes] instead of [eq_constr_univs] everywhere, this is the comparison function that doesn't care about the universe instances. - Almost all the library compiles in this new setting, but some more tactics need to be adapted. - Reinstate hconsing. - Keep Prop <= u constraints that can be used to set the level of a universe metavariable. Add better hashconsing and unionfind in normalisation of constraints. Fix a few problems in choose_canonical, normalization and substitution functions. Fix after merge Fixes after rebase with latest Coq trunk, everything compiles again, albeit slowly in some cases. - Fix module substitution and comparison of table keys in conversion using the wrong order (should always be UserOrd now) - Cleanup in universes, removing commented code. - Fix normalization of universe context which was assigning global levels to local ones. Should always be the other way! - Fix universe implementation to implement sorted cons of universes preserving order. Makes Univ.sup correct again, keeping universe in normalized form. - In evarconv.ml, allow again a Fix to appear as head of a weak-head normal form (due to partially applied fixpoints). - Catch anomalies of conversion as errors in reductionops.ml, sad but necessary as eta-expansion might build ill-typed stacks like FProd, [shift;app Rel 1], as it expands not only if the other side is rigid. - Fix module substitution bug in auto.ml - Fix case compilation: impossible cases compilation was generating useless universe levels. Use an IDProp constant instead of the polymorphic identity to not influence the level of the original type when building the case construct for the return type. - Simplify normalization of universe constraints. - Compute constructor levels of records correctly. Fall back to levels for universe instances, avoiding issues of unification. Add more to the test-suite for universe polymorphism. Fix after rebase with trunk Fix substitution of universes inside fields/params of records to be made after all normalization is done and the level of the record has been computed. Proper sharing of lower bounds with fixed universes. Conflicts: library/universes.ml library/universes.mli Constraints were not enforced in compilation of cases Fix after rebase with trunk - Canonical projections up to universes - Fix computation of class/record universe levels to allow squashing to Prop/Set in impredicative set mode. - Fix descend_in_conjunctions to properly instantiate projections with universes - Avoid Context-bound variables taking extra universes in their associated universe context. - Fix evar_define using the wrong direction when refreshing a universe under cumulativity - Do not instantiate a local universe with some lower bound to a global one just because they have the same local glb (they might not have the same one globally). - Was loosing some global constraints during normalization (brought again by the kernel), fixed now. - Proper [abstract] with polymorphic lemmas (polymorphic if the current proof is). - Fix silly bug in autorewrite: any hint after the first one was always monomorphic. - Fix fourier after rebase - Refresh universes when checking types of metas in unification (avoid (sup (sup univ))). - Speedup a script in FSetPositive.v Rework definitions in RelationClasses and Morphisms to share universe levels as much as possible. This factorizes many useless x <= RelationClasses.foo constraints in code that uses setoid rewriting. Slight incompatible change in the implicits for Reflexivity and Irreflexivity as well. - Share even more universes in Morphisms using a let. - Use splay_prod instead of splay_prod_assum which doesn't reduce let's to find a relation in setoid_rewrite - Fix [Declare Instance] not properly dealing with let's in typeclass contexts. Fixes in inductiveops, evarutil. Patch by Yves Bertot to allow naming universes in inductive definitions. Fixes in tacinterp not propagating evars correctly. Fix for issue #27: lowering a Type to Prop is allowed during inference (resulting in a Type (* Set *)) but kernel reduction was wrongly refusing the equation [Type (*Set*) = Set]. Fix in interface of canonical structures: an instantiated polymorphic projection is not needed to lookup a structure, just the projection name is enough (reported by C. Cohen). Move from universe inference to universe checking in the kernel. All tactics have to be adapted so that they carry around their generated constraints (living in their sigma), which is mostly straightforward. The more important changes are when refering to Coq constants, the tactics code is adapted so that primitive eq, pairing and sigma types might be polymorphic. Fix another few places in tacinterp and evarconv/evarsolve where the sigma was not folded correctly. - Fix discharge adding spurious global constraints on polymorphic universe variables appearing in assumptions. - Fixes in inductiveops not taking into account universe polymorphic inductives. WIP on checked universe polymorphism, it is clearly incompatible with the previous usage of polymorphic inductives + non-polymorphic definitions on them as universe levels now appear in the inductive type, and add equality constraints between universes that were otherwise just in a cumulativity relation (not sure that was actually correct). Refined version of unification of universe instances for first-order unification, prefering unfolding to arbitrary identification of universes. Moved kernel to universe checking only. Adapt the code to properly infer constraints during typechecking and refinement (tactics) and only check constraints when adding constants/inductives to the environment. Exception made of module subtyping that needs inference of constraints... The kernel conversion (fconv) has two modes: checking only and inference, the later being used by modules only. Evarconv/unification make use of a different strategy for conversion of constants that prefer unfolding to blind unification of rigid universes. Likewise, conversion checking backtracks on different universe instances (modulo the constraints). - adapt congruence/funind/ring plugins to this new mode, forcing them to declare their constraints. - To avoid big performance penalty with reification, make ring/field non-polymorphic (non-linear explosion in run time to be investigated further). - pattern and change tactics need special treatment: as they are not _reduction_ but conversion functions, their operation requires to update an evar_map with new universe constraints. - Fix vm_compute to work better with universes. If the normal form is made only of constructors then the readback is correct. However a deeper change will be needed to treat substitution of universe instances when unfolding constants. Remove libtypes.ml Fix after merge. Fix after rebase with trunk. **** Add projections to the kernel, as optimized implementations of constants. - New constructor Proj expects a projection constant applied to its principal inductive argument. - Reduction machines shortcut the expansion to a case and directly project the right argument. - No need to keep parameters as part of the projection's arguments as they are inferable from the type of the principal argument. - ML code now compiles, debugging needed. Start debugging the implementation of projections. Externalisation should keep the information about projections. Internalization, pattern-matching, unification and reduction of projections. Fix some code that used to have _ for parameters that are no longer present in projections. Fixes in unification, reduction, term indexing, auto hints based on projections, add debug printers. Fix byte-compilation of projections, unification, congruence with projections. Adapt .v files using "@proj _ _ record" syntax, should come back on this later. Fix coercion insertion code to properly deal with projection coercions. Fix [simpl proj]... TODO [unfold proj], proj is not considered evaluable. - Fix whnf of projections, now respecting opacity information. - Fix conversion of projections to try first-order first and then incrementally unfold them. - Fix computation of implicit args for projections, simply dropping the information for parameters. - Fix a few scripts that relied on projections carrying their parameters (few at's, rewrites). - Fix unify_with_subterm to properly match under projections. - Fix bug in cooking of projections. - Add pattern PProj for projections. - A very strange bug appeared in BigZ.v, making coqtop segfault on the export of BigN... tofix Fixes after rebase with trunk. Everything compiles now, with efficient projections. Fixes after rebase with trunk (esp. reductionops). Remove warnings, backport patch from old univs+projs branch. Proper expansion of projections during unification. They are considered as maybe flexible keys in evarconv/unification. We try firstorder unification and otherwise expand them as necessary, completely mimicking the original behavior, when they were constants. Fix head_constr_bound interface, the arguments are never needed (they're outside their environment actually). [simpl] and [red]/[intro] should behave just like before now. Fix evarconv that was giving up on proj x = ?e problems too early. - Port patch by Maxime Denes implementing fast projections in the native conversion. - Backport patch to add eta-expansion for records. Do not raise an exception but simply fails if trying to do eta on an inductive that is not a record. Fix projections detyping/matching and unification.ml not always recovering on first-order universe inequalities. Correct eta-expansion for records, and change strategy for conversion with projections to favor reduction over first-order unification a little more. Fix a bug in Ltac pattern matching on projections. Fix evars_reset_evd to not recheck existing constraints in case it is just an update (performance improvement for typeclass resolution). - Respect Global/Transparent oracle during unification. Opaque means _never_ unfolded there. - Add empty universes as well as the initial universes (having Prop < Set). - Better display of universe inconsistencies. - Add Beta Ziliani's patch to go fast avoiding imitation when possible. - Allow instantiation by lower bound even if there are universes above - (tentative) In refinement, avoid incremental refinement of terms containing no holes and do it in one step (much faster on big terms). Turned on only if not a checked command. Remove dead code in univ/universes.ml and cleanup setup of hashconsing, for a small speed and memory footprint improvement. - Fix bug in unification using cumulativity when conversion should have been used. - Fix unification of evars having type Type, no longer forcing them to be equal (potentially more constraints): algorithm is now complete w.r.t. cumulativity. - In clenvtac, use refine_nocheck as we are guaranteed to get well-typed terms from unification now, including sufficient universe constraints. Small general speedup. - Fix inference of universe levels of inductive types to avoid smashing inadvertently from Set to Prop. - Fix computation of discharged hypotheses forgetting the arity in inductives. - Fix wrong order in printing of universe inconsistency explanation - Allow coercions between two polymorphic instances of the same inductive/constant. - Do evar normalization and saturation by classes before trying to use program coercion during pretyping. - In unification, force equalities of universes when unifying the same rigid head constants. - Fix omission of projections in constr_leq - Fix [admit] tactic's handling of normalized universes. Fix typing of projections not properly normalizing w.r.t. evars, resulting in anomaly sometimes. Adapt rewrite to work with computational relations (in Type), while maintaining backward compatibility with Propositional rewriting. Introduce a [diff] function on evar maps and universe contexts to properly deal with clause environments. Local hints in auto now store just the extension of the evar map they rely on, so merging them becomes efficient. This fixes an important performance issue in auto and typeclass resolution in presence of a large number of universe constraints. Change FSetPositive and MSetPositive to put their [elt] and [t] universes in Type to avoid restricting global universes to [Set]. This is due to [flip]s polymorphic type being fixed in monomorphic instances of Morphisms.v, and rewriting hence forcing unification of levels that could be left unrelated. - Try a fast_typeops implementation of kernel type inference that allocates less by not rebuilding the term, shows a little performance improvement, and less allocation. - Build universe inconsistency explanations lazily, avoiding huge blowup (x5) in check_constraints/merge_constraints in time and space (these are stressed in universe polymorphic mode). - Hashcons universe instances. Add interface file for fast_typeops Use monomorphic comparisons, little optimizations of hashconsing and comparison in univ.ml. Fix huge slowdown due to building huge error messages. Lazy is not enough to tame this completely. Fix last performance issue, due to abstracts building huge terms abstracting on parts of the section context. Was due to wrong handling of Let... Qed.s in abstract. Performance is a tiny bit better than the trunk now. First step at compatibility layer for projections. Compatibility mode for projections. c.(p), p c use primitive projs, while @p refers to an expansion [λ params c, c.(p)]. Recovers almost entire source compatibility with trunk scripts, except when mixing @p and p and doing syntactic matching (they're unifiable though). Add a [Set Primitive Projections] flag to set/unset the use of primitive projections, selectively for each record. Adapt code to handle both the legacy encoding and the primitive projections. Library is almost source-to-source compatible, except for syntactic operations relying on the presence of parameters. In primitive projections mode, @p refers to an expansion [λ params r. p.(r)]. More information in CHANGES (to be reformated/moved to reference manual). Backport changes from HoTT/coq: - Fix anomaly on uncatched NotASort in retyping. - Better recognition of evars that are subject to typeclass resolution. Fixes bug reported by J. Gross on coq-club. - Print universe polymorphism information for parameters as well. Fix interface for unsatisfiable constraints error, now a type error. Try making ring polymorphic again, with a big slowdown, to be investigated. Fix evar/universe leak in setoid rewrite. - Add profiling flag - Move setoid_ring back to non-polymorphic mode to compare perfs with trunk - Change unification to allow using infer_conv more often (big perf culprit), but semantics of backtracking on unification of constants is not properly implemented there. - Fix is_empty/union_evar_universe_context forgetting about some assignments. - Performance is now very close to the trunk from june, with projections deactivated.
* Fixing pervasive equalities. In particular, I removed the code that deletedGravatar Pierre-Marie Pédrot2014-03-03
| | | | | | duplicates in kernel side effects. They were chosen according to an equality that was quite irrelevant, and as expected this patch did not break the test-suite.
* Lazyconstr -> OpaqueproofGravatar Enrico Tassi2014-02-26
| | | | | Make this module deal only with opaque proofs. Make discharging/substitution invariant more explicit via a third constructor.
* New compilation mode -vi2voGravatar Enrico Tassi2014-02-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To obtain a.vo one can now: 1) coqtop -quick -compile a 2) coqtop -vi2vo a.vi To make that possible the .vo structure has been complicated. It is now made of 5 segments. | vo | vi | vi2vo | contents --------------+------+-----+-------+------------------------------------ lib | Yes | Yes | Yes | libstack (modules, notations,...) opauqe_univs | No | Yes | Yes | constraints coming from opaque proofs discharge | No | Yes | No | data needed to close sections tasks | No | Yes | No | STM tasks to produce proof terms opaque_proofs | Yes | Yes | Yes | proof terms --------------+------+-----+-------+------------------------------------ This means one can load only the strictly necessay parts. Usually one does not load the tasks segment of a .vi nor the opaque_proof segment of a .vo, unless one is turning a .vi into a .vo, in which case he load all the segments. Optional segments are marshalled as None. But for lib, all segments are Array.t of: | type --------------+--------------------------------------------------------- lib | a list of Libobject.obj (n'importe quoi) opauqe_univs | Univ.consraints Future.computation discharge | what Cooking.cook_constr needs tasks | Stm.tasks (a task is system_state * vernacexpr list) opaque_proofs | Term.constr Future.computation --------------+------+-----+-------+------------------------------------ Invariant: all Future.computation in a vo file (obtained by a vi2vo compilation or not) have been terminated with Future.join (or Future.sink). This means they are values (inside a box). This invariant does not hold for vi files. E.g. opauqe_proofs can be dangling Future.computation (i.e. NotHere exception). The vi2vo compilation step will replace them by true values. Rationale for opaque_univs: in the vi2vo transformation we want to reuse the lib segment. Hence the missing pieces have to be put on the side, not inside. Opaque proof terms are already in a separte segment. Universe constraints are not, hence the new opauqe_univs segment. Such segment, if present in a .vo file, is always loaded, and Declare.open_constant will add to the environment the constraints stored there. For regular constants this is not necessay since the constraints are already in their enclosing module (and also in the constant_body). With vi2vo the constraints coming from the proof are not in the constant_body (hence not in the enclosing module) but there and are added to the environment explicitly by Declare.open_constant. Rationale for discharge: vi2vo produces a proof term in its original context (in the middle of a section). Then it has to discharge the object. This segment contains the data that is needed in order to do so. It is morally the input that Lib.close_section passes to Cooking (via the insane rewinding of libstack, GlobalRecipe, etc chain). Checksums: the checksum of .vi and a .vo obtain from it is the same. This means that if if b.vo has been compiled using a.vi, and then a.vi is compiled into a.vo, Require Import b works (and recursively loads a.vo).
* Revert "Partial revert of r16711"Gravatar Maxime Dénès2013-12-28
| | | | | | | The sharing introduced by this commit is now correct, since a reference used by the native compiler has been removed from constant_body. This reverts commit 413f5fcd4bf581ff3ea4694c193d637589c7d54f.
* Removing native_name reference from constant_body.Gravatar Maxime Dénès2013-12-28
| | | | | | For now, this reference (renamed to link_info) has been moved to the environment (for constants and inductive types). But this is only a first step towards making the native compiler more functional.
* STM: capture type checking error (Closes: 3195)Gravatar Enrico Tassi2013-12-24
| | | | | Also, the future chain that reaches the kernel is greedy. If the user executes step by step, then the error is raised immediately.
* Future: better doc + restore ~pure optimizationGravatar gareuselesinge2013-10-31
| | | | | | | | | | | This optimization was undone because the kernel type checking was not a pure functions (it was accessing the conv_oracle state imperatively). Now that the conv_oracle state is part of env, the optimization can be restored. This was the cause of the increase in memory consumption, since it was forcing to keep a copy of the system state for every proof, even the ones that are not delayed/delegated to slaves. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16963 85f007b7-540e-0410-9357-904b9bb8a0f7
* Future: ported to Ephemeron + exception enhancingGravatar gareuselesinge2013-10-18
| | | | | | | | | | | | | | | | A future always carries a fix_exn with it: a function that enriches an exception with the state in which the error occurs and also a safe state close to it where one could backtrack. A future can be in two states: Ongoing or Finished. The latter state is obtained by Future.join and after that the future can be safely marshalled. An Ongoing future can be marshalled, but its value is lost. This makes it possible to send the environment to a slave process without pre-processing it to drop all unfinished proofs (they are dropped automatically in some sense). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16892 85f007b7-540e-0410-9357-904b9bb8a0f7
* Removing a bunch of generic equalities.Gravatar ppedrot2013-09-27
| | | | git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16806 85f007b7-540e-0410-9357-904b9bb8a0f7
* ind_tables: properly handling side effectsGravatar gareuselesinge2013-08-30
| | | | | | | | | | | | | | If a constant is defined as transparent, not only its side effects (opaque sub proofs as in abstract, and transparent ind schemes) are declared globally, but the ones that are schemes are also declared as such. The only sub optimal thing is that the code handling in a special way the side effects of transparent constants is in declare.ml that does not see ind_tables.ml, hence a forward ref to a function is used. IMO, ind_tables has no reason to stay in toplevel/. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16747 85f007b7-540e-0410-9357-904b9bb8a0f7
* Partial revert of r16711Gravatar letouzey2013-08-20
| | | | | | | It seems that it's critical for the native compiler that a fresh (ref NotLinked) is created during substitution. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16719 85f007b7-540e-0410-9357-904b9bb8a0f7
* Declareops + Modops : more clever substitutionsGravatar letouzey2013-08-20
| | | | | | | | | | | | | | | | | We try harder to preserve pointer equality when substituting. This will probably have little effect (for instance the constr_substituted are anyway _never_ substituted in place), but it cannot harm. Two particular cases: - we try to share (and maintain shared) mind_user_lc and mind_nf_lc - we try to share (and maintain shared) mod_expr and mod_type TODO: check that native compiler is still ok, since we might have less (ref NotLinked) now. Having references in constant_body and co is anyway a Very Bad Idea (TM). git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16711 85f007b7-540e-0410-9357-904b9bb8a0f7
* Attempt to restore hash-consing of opaque termsGravatar letouzey2013-08-20
| | | | | | Without this, the stdlib vo files are +30% larger git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16707 85f007b7-540e-0410-9357-904b9bb8a0f7
* abstract+Defined: create opaque sub proofs (as pre-ParalITP)Gravatar gareuselesinge2013-08-19
| | | | | | | | | | | | | | | Non-opaque-constant's side effects are processed before the constant enters the kernel and global constants are generated for them (as before, but not by side effect in the middle of the proof construction). This makes sense because proofs ending with Defined have to be run immediately, so the list of side effects is immediately available. These side effects are type checked again. To fix that the idea of kernel signatures could be employed. git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16702 85f007b7-540e-0410-9357-904b9bb8a0f7
* enhance marshallable option for freeze (minor TODO in safe_typing)Gravatar gareuselesinge2013-08-08
| | | | | | | | | It can be: `Yes Full data, in a state that can be marshalled `No Full data, good for Undo only `Shallow Partial data, marshallable, good for slave processes git-svn-id: svn+ssh://scm.gforge.inria.fr/svn/coq/trunk@16682 85f007b7-540e-0410-9357-904b9bb8a0f7