aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
Diffstat (limited to 'theories')
-rw-r--r--theories/Numbers/Cyclic/Int31/Cyclic31.v98
1 files changed, 49 insertions, 49 deletions
diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v
index f6669d284..1b835de3e 100644
--- a/theories/Numbers/Cyclic/Int31/Cyclic31.v
+++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v
@@ -75,34 +75,34 @@ Section Basics.
(** * Iterated shift to the right *)
- Definition nshiftr n x := iter_nat n _ shiftr x.
+ Definition nshiftr x := nat_rect _ x (fun _ => shiftr).
Lemma nshiftr_S :
- forall n x, nshiftr (S n) x = shiftr (nshiftr n x).
+ forall n x, nshiftr x (S n) = shiftr (nshiftr x n).
Proof.
reflexivity.
Qed.
Lemma nshiftr_S_tail :
- forall n x, nshiftr (S n) x = nshiftr n (shiftr x).
+ forall n x, nshiftr x (S n) = nshiftr (shiftr x) n.
Proof.
intros n; elim n; simpl; auto.
intros; now f_equal.
Qed.
- Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0.
+ Lemma nshiftr_n_0 : forall n, nshiftr 0 n = 0.
Proof.
induction n; simpl; auto.
rewrite IHn; auto.
Qed.
- Lemma nshiftr_size : forall x, nshiftr size x = 0.
+ Lemma nshiftr_size : forall x, nshiftr x size = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftr_above_size : forall k x, size<=k ->
- nshiftr k x = 0.
+ nshiftr x k = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
@@ -113,33 +113,33 @@ Section Basics.
(** * Iterated shift to the left *)
- Definition nshiftl n x := iter_nat n _ shiftl x.
+ Definition nshiftl x := nat_rect _ x (fun _ => shiftl).
Lemma nshiftl_S :
- forall n x, nshiftl (S n) x = shiftl (nshiftl n x).
+ forall n x, nshiftl x (S n) = shiftl (nshiftl x n).
Proof.
reflexivity.
Qed.
Lemma nshiftl_S_tail :
- forall n x, nshiftl (S n) x = nshiftl n (shiftl x).
- Proof.
+ forall n x, nshiftl x (S n) = nshiftl (shiftl x) n.
+ Proof.
intros n; elim n; simpl; intros; now f_equal.
Qed.
- Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0.
+ Lemma nshiftl_n_0 : forall n, nshiftl 0 n = 0.
Proof.
induction n; simpl; auto.
rewrite IHn; auto.
Qed.
- Lemma nshiftl_size : forall x, nshiftl size x = 0.
+ Lemma nshiftl_size : forall x, nshiftl x size = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftl_above_size : forall k x, size<=k ->
- nshiftl k x = 0.
+ nshiftl x k = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
@@ -149,13 +149,13 @@ Section Basics.
Qed.
Lemma firstr_firstl :
- forall x, firstr x = firstl (nshiftl (pred size) x).
+ forall x, firstr x = firstl (nshiftl x (pred size)).
Proof.
destruct x; simpl; auto.
Qed.
Lemma firstl_firstr :
- forall x, firstl x = firstr (nshiftr (pred size) x).
+ forall x, firstl x = firstr (nshiftr x (pred size)).
Proof.
destruct x; simpl; auto.
Qed.
@@ -163,13 +163,13 @@ Section Basics.
(** More advanced results about [nshiftr] *)
Lemma nshiftr_predsize_0_firstl : forall x,
- nshiftr (pred size) x = 0 -> firstl x = D0.
+ nshiftr x (pred size) = 0 -> firstl x = D0.
Proof.
destruct x; compute; intros H; injection H; intros; subst; auto.
Qed.
Lemma nshiftr_0_propagates : forall n p x, n <= p ->
- nshiftr n x = 0 -> nshiftr p x = 0.
+ nshiftr x n = 0 -> nshiftr x p = 0.
Proof.
intros.
replace p with ((p-n)+n)%nat by omega.
@@ -179,7 +179,7 @@ Section Basics.
Qed.
Lemma nshiftr_0_firstl : forall n x, n < size ->
- nshiftr n x = 0 -> firstl x = D0.
+ nshiftr x n = 0 -> firstl x = D0.
Proof.
intros.
apply nshiftr_predsize_0_firstl.
@@ -196,15 +196,15 @@ Section Basics.
forall x, P x.
Proof.
intros.
- assert (forall n, n<=size -> P (nshiftr (size - n) x)).
+ assert (forall n, n<=size -> P (nshiftr x (size - n))).
induction n; intros.
rewrite nshiftr_size; auto.
rewrite sneakl_shiftr.
apply H0.
- change (P (nshiftr (S (size - S n)) x)).
+ change (P (nshiftr x (S (size - S n)))).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; omega.
- change x with (nshiftr (size-size) x); auto.
+ change x with (nshiftr x (size-size)); auto.
Qed.
Lemma int31_ind_twice : forall P : int31->Prop,
@@ -235,8 +235,8 @@ Section Basics.
Lemma recr_aux_converges :
forall n p x, n <= size -> n <= p ->
- recr_aux n A case0 caserec (nshiftr (size - n) x) =
- recr_aux p A case0 caserec (nshiftr (size - n) x).
+ recr_aux n A case0 caserec (nshiftr x (size - n)) =
+ recr_aux p A case0 caserec (nshiftr x (size - n)).
Proof.
induction n.
simpl minus; intros.
@@ -245,9 +245,9 @@ Section Basics.
destruct p.
inversion H0.
unfold recr_aux; fold recr_aux.
- destruct (iszero (nshiftr (size - S n) x)); auto.
+ destruct (iszero (nshiftr x (size - S n))); auto.
f_equal.
- change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x).
+ change (shiftr (nshiftr x (size - S n))) with (nshiftr x (S (size - S n))).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; auto with arith.
Qed.
@@ -258,7 +258,7 @@ Section Basics.
Proof.
intros.
unfold recr.
- change x with (nshiftr (size - size) x).
+ change x with (nshiftr x (size - size)).
rewrite (recr_aux_converges size (S size)); auto with arith.
rewrite recr_aux_eqn; auto.
Qed.
@@ -435,22 +435,22 @@ Section Basics.
Lemma phibis_aux_bounded :
forall n x, n <= size ->
- (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z.of_nat n))%Z.
+ (phibis_aux n (nshiftr x (size-n)) < 2 ^ (Z.of_nat n))%Z.
Proof.
induction n.
simpl minus; unfold phibis_aux; simpl; auto with zarith.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
- fold (phibis_aux n (shiftr (nshiftr (size - S n) x))).
- assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ fold (phibis_aux n (shiftr (nshiftr x (size - S n)))).
+ assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)).
replace (size - n)%nat with (S (size - (S n))) by omega.
simpl; auto.
rewrite H0.
assert (H1 : n <= size) by omega.
specialize (IHn x H1).
- set (y:=phibis_aux n (nshiftr (size - n) x)) in *.
+ set (y:=phibis_aux n (nshiftr x (size - n))) in *.
rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
- case_eq (firstr (nshiftr (size - S n) x)); intros.
+ case_eq (firstr (nshiftr x (size - S n))); intros.
rewrite Z.double_spec; auto with zarith.
rewrite Z.succ_double_spec; auto with zarith.
Qed.
@@ -461,12 +461,12 @@ Section Basics.
rewrite <- phibis_aux_equiv.
split.
apply phibis_aux_pos.
- change x with (nshiftr (size-size) x).
+ change x with (nshiftr x (size-size)).
apply phibis_aux_bounded; auto.
Qed.
Lemma phibis_aux_lowerbound :
- forall n x, firstr (nshiftr n x) = D1 ->
+ forall n x, firstr (nshiftr x n) = D1 ->
(2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z.
Proof.
induction n.
@@ -508,7 +508,7 @@ Section Basics.
(** After killing [n] bits at the left, are the numbers equal ?*)
Definition EqShiftL n x y :=
- nshiftl n x = nshiftl n y.
+ nshiftl x n = nshiftl y n.
Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
Proof.
@@ -600,7 +600,7 @@ Section Basics.
end.
Lemma i2l_nshiftl : forall n x, n<=size ->
- i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
+ i2l (nshiftl x n) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
Proof.
induction n.
intros.
@@ -644,13 +644,13 @@ Section Basics.
unfold EqShiftL.
assert (k <= size) by omega.
split; intros.
- assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto).
+ assert (i2l (nshiftl x k) = i2l (nshiftl y k)) by (f_equal; auto).
rewrite 2 i2l_nshiftl in H1; auto.
eapply app_inv_head; eauto.
- assert (i2l (nshiftl k x) = i2l (nshiftl k y)).
+ assert (i2l (nshiftl x k) = i2l (nshiftl y k)).
rewrite 2 i2l_nshiftl; auto.
f_equal; auto.
- rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)).
+ rewrite <- (l2i_i2l (nshiftl x k)), <- (l2i_i2l (nshiftl y k)).
f_equal; auto.
Qed.
@@ -818,30 +818,30 @@ Section Basics.
Lemma phi_inv_phi_aux :
forall n x, n <= size ->
- phi_inv (phibis_aux n (nshiftr (size-n) x)) =
- nshiftr (size-n) x.
+ phi_inv (phibis_aux n (nshiftr x (size-n))) =
+ nshiftr x (size-n).
Proof.
induction n.
intros; simpl minus.
rewrite nshiftr_size; auto.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
- fold (phibis_aux n (shiftr (nshiftr (size-S n) x))).
- assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ fold (phibis_aux n (shiftr (nshiftr x (size-S n)))).
+ assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)).
replace (size - n)%nat with (S (size - (S n))); auto; omega.
rewrite H0.
- case_eq (firstr (nshiftr (size - S n) x)); intros.
+ case_eq (firstr (nshiftr x (size - S n))); intros.
rewrite phi_inv_double.
rewrite IHn by omega.
rewrite <- H0.
- remember (nshiftr (size - S n) x) as y.
+ remember (nshiftr x (size - S n)) as y.
destruct y; simpl in H1; rewrite H1; auto.
rewrite phi_inv_double_plus_one.
rewrite IHn by omega.
rewrite <- H0.
- remember (nshiftr (size - S n) x) as y.
+ remember (nshiftr x (size - S n)) as y.
destruct y; simpl in H1; rewrite H1; auto.
Qed.
@@ -849,7 +849,7 @@ Section Basics.
Proof.
intros.
rewrite <- phibis_aux_equiv.
- replace x with (nshiftr (size - size) x) by auto.
+ replace x with (nshiftr x (size - size)) by auto.
apply phi_inv_phi_aux; auto.
Qed.
@@ -874,7 +874,7 @@ Section Basics.
end.
Lemma p2ibis_bounded : forall n p,
- nshiftr n (snd (p2ibis n p)) = 0.
+ nshiftr (snd (p2ibis n p)) n = 0.
Proof.
induction n.
simpl; intros; auto.
@@ -1739,7 +1739,7 @@ Section Int31_Specs.
Proof.
intros.
rewrite head031_equiv.
- assert (nshiftl size x = 0%int31).
+ assert (nshiftl x size = 0%int31).
apply nshiftl_size.
revert x H H0.
unfold size at 2 5.
@@ -1837,7 +1837,7 @@ Section Int31_Specs.
Proof.
intros.
rewrite tail031_equiv.
- assert (nshiftr size x = 0%int31).
+ assert (nshiftr x size = 0%int31).
apply nshiftr_size.
revert x H H0.
induction size.