aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
Diffstat (limited to 'theories')
-rw-r--r--theories/Compat/Coq85.v7
-rw-r--r--theories/Init/Datatypes.v2
-rw-r--r--theories/Lists/List.v76
-rw-r--r--theories/Lists/ListSet.v109
-rw-r--r--theories/Logic/ClassicalFacts.v78
-rw-r--r--theories/Logic/PropFacts.v50
-rw-r--r--theories/Program/Wf.v2
7 files changed, 319 insertions, 5 deletions
diff --git a/theories/Compat/Coq85.v b/theories/Compat/Coq85.v
index 1622f2aed..7ce04a662 100644
--- a/theories/Compat/Coq85.v
+++ b/theories/Compat/Coq85.v
@@ -7,3 +7,10 @@
(************************************************************************)
(** Compatibility file for making Coq act similar to Coq v8.5 *)
+
+(* In 8.5, "intros [|]", taken e.g. on a goal "A\/B->C", does not
+ behave as "intros [H|H]" but leave instead hypotheses quantified in
+ the goal, here producing subgoals A->C and B->C. *)
+
+Unset Bracketing Last Introduction Pattern.
+
diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v
index de615301d..aaffc0978 100644
--- a/theories/Init/Datatypes.v
+++ b/theories/Init/Datatypes.v
@@ -151,6 +151,7 @@ Inductive option (A:Type) : Type :=
| Some : A -> option A
| None : option A.
+Arguments Some {A} a.
Arguments None {A}.
Definition option_map (A B:Type) (f:A->B) (o : option A) : option B :=
@@ -225,6 +226,7 @@ Inductive list (A : Type) : Type :=
| cons : A -> list A -> list A.
Arguments nil {A}.
+Arguments cons {A} a l.
Infix "::" := cons (at level 60, right associativity) : list_scope.
Delimit Scope list_scope with list.
Bind Scope list_scope with list.
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index fe18686e2..45306caf0 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -7,7 +7,7 @@
(************************************************************************)
Require Setoid.
-Require Import PeanoNat Le Gt Minus Bool.
+Require Import PeanoNat Le Gt Minus Bool Lt.
Set Implicit Arguments.
(* Set Universe Polymorphism. *)
@@ -1633,6 +1633,80 @@ Section Cutting.
end
end.
+ Lemma firstn_nil n: firstn n [] = [].
+ Proof. induction n; now simpl. Qed.
+
+ Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l).
+ Proof. now simpl. Qed.
+
+ Lemma firstn_all l: firstn (length l) l = l.
+ Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed.
+
+ Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l.
+ Proof. induction n as [|k iHk].
+ - intro. inversion 1 as [H1|?].
+ rewrite (length_zero_iff_nil l) in H1. subst. now simpl.
+ - destruct l as [|x xs]; simpl.
+ * now reflexivity.
+ * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H.
+ Qed.
+
+ Lemma firstn_O l: firstn 0 l = [].
+ Proof. now simpl. Qed.
+
+ Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n.
+ Proof.
+ induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl].
+ - auto with arith.
+ - apply Peano.le_n_S, iHk.
+ Qed.
+
+ Lemma firstn_length_le: forall l:list A, forall n:nat,
+ n <= length l -> length (firstn n l) = n.
+ Proof. induction l as [|x xs Hrec].
+ - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl.
+ - destruct n.
+ * now simpl.
+ * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H).
+ Qed.
+
+ Lemma firstn_app n:
+ forall l1 l2,
+ firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2).
+ Proof. induction n as [|k iHk]; intros l1 l2.
+ - now simpl.
+ - destruct l1 as [|x xs].
+ * unfold firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O.
+ * rewrite <- app_comm_cons. simpl. f_equal. apply iHk.
+ Qed.
+
+ Lemma firstn_app_2 n:
+ forall l1 l2,
+ firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2.
+ Proof. induction n as [| k iHk];intros l1 l2.
+ - unfold firstn at 2. rewrite <- plus_n_O, app_nil_r.
+ rewrite firstn_app. rewrite <- minus_diag_reverse.
+ unfold firstn at 2. rewrite app_nil_r. apply firstn_all.
+ - destruct l2 as [|x xs].
+ * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith.
+ * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k).
+ auto with arith.
+ rewrite H0, firstn_all2; [reflexivity | auto with arith].
+ Qed.
+
+ Lemma firstn_firstn:
+ forall l:list A,
+ forall i j : nat,
+ firstn i (firstn j l) = firstn (min i j) l.
+ Proof. induction l as [|x xs Hl].
+ - intros. simpl. now rewrite ?firstn_nil.
+ - destruct i.
+ * intro. now simpl.
+ * destruct j.
+ + now simpl.
+ + simpl. f_equal. apply Hl.
+ Qed.
+
Fixpoint skipn (n:nat)(l:list A) : list A :=
match n with
| 0 => l
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index 0a0bf0dea..c8ed95cd4 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -48,7 +48,11 @@ Section first_definitions.
end
end.
- (** If [a] belongs to [x], removes [a] from [x]. If not, does nothing *)
+ (** If [a] belongs to [x], removes [a] from [x]. If not, does nothing.
+ Invariant: any element should occur at most once in [x], see for
+ instance [set_add]. We hence remove here only the first occurrence
+ of [a] in [x]. *)
+
Fixpoint set_remove (a:A) (x:set) : set :=
match x with
| nil => empty_set
@@ -227,6 +231,68 @@ Section first_definitions.
intros; elim (Aeq_dec a a0); intros; discriminate.
Qed.
+ Lemma set_add_iff a b l : In a (set_add b l) <-> a = b \/ In a l.
+ Proof.
+ split. apply set_add_elim. apply set_add_intro.
+ Qed.
+
+ Lemma set_add_nodup a l : NoDup l -> NoDup (set_add a l).
+ Proof.
+ induction 1 as [|x l H H' IH]; simpl.
+ - constructor; [ tauto | constructor ].
+ - destruct (Aeq_dec a x) as [<-|Hax]; constructor; trivial.
+ rewrite set_add_iff. intuition.
+ Qed.
+
+ Lemma set_remove_1 (a b : A) (l : set) :
+ In a (set_remove b l) -> In a l.
+ Proof.
+ induction l as [|x xs Hrec].
+ - intros. auto.
+ - simpl. destruct (Aeq_dec b x).
+ * tauto.
+ * intro H. destruct H.
+ + rewrite H. apply in_eq.
+ + apply in_cons. apply Hrec. assumption.
+ Qed.
+
+ Lemma set_remove_2 (a b:A) (l : set) :
+ NoDup l -> In a (set_remove b l) -> a <> b.
+ Proof.
+ induction l as [|x l IH]; intro ND; simpl.
+ - tauto.
+ - inversion_clear ND.
+ destruct (Aeq_dec b x) as [<-|Hbx].
+ + congruence.
+ + destruct 1; subst; auto.
+ Qed.
+
+ Lemma set_remove_3 (a b : A) (l : set) :
+ In a l -> a <> b -> In a (set_remove b l).
+ Proof.
+ induction l as [|x xs Hrec].
+ - now simpl.
+ - simpl. destruct (Aeq_dec b x) as [<-|Hbx]; simpl; intuition.
+ congruence.
+ Qed.
+
+ Lemma set_remove_iff (a b : A) (l : set) :
+ NoDup l -> (In a (set_remove b l) <-> In a l /\ a <> b).
+ Proof.
+ split; try split.
+ - eapply set_remove_1; eauto.
+ - eapply set_remove_2; eauto.
+ - destruct 1; apply set_remove_3; auto.
+ Qed.
+
+ Lemma set_remove_nodup a l : NoDup l -> NoDup (set_remove a l).
+ Proof.
+ induction 1 as [|x l H H' IH]; simpl.
+ - constructor.
+ - destruct (Aeq_dec a x) as [<-|Hax]; trivial.
+ constructor; trivial.
+ rewrite set_remove_iff; trivial. intuition.
+ Qed.
Lemma set_union_intro1 :
forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y).
@@ -264,18 +330,26 @@ Section first_definitions.
tauto.
Qed.
+ Lemma set_union_iff a l l': In a (set_union l l') <-> In a l \/ In a l'.
+ Proof.
+ split. apply set_union_elim. apply set_union_intro.
+ Qed.
+
+ Lemma set_union_nodup l l' : NoDup l -> NoDup l' -> NoDup (set_union l l').
+ Proof.
+ induction 2 as [|x' l' ? ? IH]; simpl; trivial. now apply set_add_nodup.
+ Qed.
+
Lemma set_union_emptyL :
forall (a:A) (x:set), set_In a (set_union empty_set x) -> set_In a x.
intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
Qed.
-
Lemma set_union_emptyR :
forall (a:A) (x:set), set_In a (set_union x empty_set) -> set_In a x.
intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
Qed.
-
Lemma set_inter_intro :
forall (a:A) (x y:set),
set_In a x -> set_In a y -> set_In a (set_inter x y).
@@ -326,6 +400,21 @@ Section first_definitions.
eauto with datatypes.
Qed.
+ Lemma set_inter_iff a l l' : In a (set_inter l l') <-> In a l /\ In a l'.
+ Proof.
+ split.
+ - apply set_inter_elim.
+ - destruct 1. now apply set_inter_intro.
+ Qed.
+
+ Lemma set_inter_nodup l l' : NoDup l -> NoDup l' -> NoDup (set_inter l l').
+ Proof.
+ induction 1 as [|x l H H' IH]; intro Hl'; simpl.
+ - constructor.
+ - destruct (set_mem x l'); auto.
+ constructor; auto. rewrite set_inter_iff; tauto.
+ Qed.
+
Lemma set_diff_intro :
forall (a:A) (x y:set),
set_In a x -> ~ set_In a y -> set_In a (set_diff x y).
@@ -360,6 +449,20 @@ Section first_definitions.
rewrite H; trivial.
Qed.
+ Lemma set_diff_iff a l l' : In a (set_diff l l') <-> In a l /\ ~In a l'.
+ Proof.
+ split.
+ - split; [eapply set_diff_elim1 | eapply set_diff_elim2]; eauto.
+ - destruct 1. now apply set_diff_intro.
+ Qed.
+
+ Lemma set_diff_nodup l l' : NoDup l -> NoDup l' -> NoDup (set_diff l l').
+ Proof.
+ induction 1 as [|x l H H' IH]; intro Hl'; simpl.
+ - constructor.
+ - destruct (set_mem x l'); auto using set_add_nodup.
+ Qed.
+
Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x).
red; intros a x H.
apply (set_diff_elim2 _ _ _ H).
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index cdc3e0461..d4ebfb42f 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -34,6 +34,8 @@ Table of contents:
3 3. Independence of general premises and drinker's paradox
+4. Classical logic and principle of unrestricted minimization
+
*)
(************************************************************************)
@@ -658,3 +660,79 @@ Proof.
exists x; intro; exact Hx.
exists x0; exact Hnot.
Qed.
+
+(** ** Principle of unrestricted minimization *)
+
+Require Import Coq.Arith.PeanoNat.
+
+Definition Minimal (P:nat -> Prop) (n:nat) : Prop :=
+ P n /\ forall k, P k -> n<=k.
+
+Definition Minimization_Property (P : nat -> Prop) : Prop :=
+ forall n, P n -> exists m, Minimal P m.
+
+Section Unrestricted_minimization_entails_excluded_middle.
+
+ Hypothesis unrestricted_minimization: forall P, Minimization_Property P.
+
+ Theorem unrestricted_minimization_entails_excluded_middle : forall A, A\/~A.
+ Proof.
+ intros A.
+ pose (P := fun n:nat => n=0/\A \/ n=1).
+ assert (P 1) as h.
+ { unfold P. intuition. }
+ assert (P 0 <-> A) as p₀.
+ { split.
+ + intros [[_ h₀]|[=]]. assumption.
+ + unfold P. tauto. }
+ apply unrestricted_minimization in h as ([|[|m]] & hm & hmm).
+ + intuition.
+ + right.
+ intros HA. apply p₀, hmm, PeanoNat.Nat.nle_succ_0 in HA. assumption.
+ + destruct hm as [([=],_) | [=] ].
+ Qed.
+
+End Unrestricted_minimization_entails_excluded_middle.
+
+Require Import Wf_nat.
+
+Section Excluded_middle_entails_unrestricted_minimization.
+
+ Hypothesis em : forall A, A\/~A.
+
+ Theorem excluded_middle_entails_unrestricted_minimization :
+ forall P, Minimization_Property P.
+ Proof.
+ intros P n HPn.
+ assert (dec : forall n, P n \/ ~ P n) by auto using em.
+ assert (ex : exists n, P n) by (exists n; assumption).
+ destruct (dec_inh_nat_subset_has_unique_least_element P dec ex) as (n' & HPn' & _).
+ exists n'. assumption.
+ Qed.
+
+End Excluded_middle_entails_unrestricted_minimization.
+
+(** However, minimization for a given predicate does not necessarily imply
+ decidability of this predicate *)
+
+Section Example_of_undecidable_predicate_with_the_minimization_property.
+
+ Variable s : nat -> bool.
+
+ Let P n := exists k, n<=k /\ s k = true.
+
+ Example undecidable_predicate_with_the_minimization_property :
+ Minimization_Property P.
+ Proof.
+ unfold Minimization_Property.
+ intros h hn.
+ exists 0. split.
+ + unfold P in *. destruct hn as (k&hk₁&hk₂).
+ exists k. split.
+ * rewrite <- hk₁.
+ apply PeanoNat.Nat.le_0_l.
+ * assumption.
+ + intros **. apply PeanoNat.Nat.le_0_l.
+ Qed.
+
+End Example_of_undecidable_predicate_with_the_minimization_property.
diff --git a/theories/Logic/PropFacts.v b/theories/Logic/PropFacts.v
new file mode 100644
index 000000000..309539e5c
--- /dev/null
+++ b/theories/Logic/PropFacts.v
@@ -0,0 +1,50 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * Basic facts about Prop as a type *)
+
+(** An intuitionistic theorem from topos theory [[LambekScott]]
+
+References:
+
+[[LambekScott]] Jim Lambek, Phil J. Scott, Introduction to higher
+order categorical logic, Cambridge Studies in Advanced Mathematics
+(Book 7), 1988.
+
+*)
+
+Theorem injection_is_involution_in_Prop
+ (f : Prop -> Prop)
+ (inj : forall A B, (f A <-> f B) -> (A <-> B))
+ (ext : forall A B, A <-> B -> f A <-> f B)
+ : forall A, f (f A) <-> A.
+Proof.
+intros.
+enough (f (f (f A)) <-> f A) by (apply inj; assumption).
+split; intro H.
+- now_show (f A).
+ enough (f A <-> True) by firstorder.
+ enough (f (f A) <-> f True) by (apply inj; assumption).
+ split; intro H'.
+ + now_show (f True).
+ enough (f (f (f A)) <-> f True) by firstorder.
+ apply ext; firstorder.
+ + now_show (f (f A)).
+ enough (f (f A) <-> True) by firstorder.
+ apply inj; firstorder.
+- now_show (f (f (f A))).
+ enough (f A <-> f (f (f A))) by firstorder.
+ apply ext.
+ split; intro H'.
+ + now_show (f (f A)).
+ enough (f A <-> f (f A)) by firstorder.
+ apply ext; firstorder.
+ + now_show A.
+ enough (f A <-> A) by firstorder.
+ apply inj; firstorder.
+Defined.
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
index d89919b0a..6e5919b34 100644
--- a/theories/Program/Wf.v
+++ b/theories/Program/Wf.v
@@ -89,7 +89,7 @@ Section Measure_well_founded.
Lemma measure_wf: well_founded MR.
Proof with auto.
unfold well_founded.
- cut (forall a: M, (fun mm: M => forall a0: T, m a0 = mm -> Acc MR a0) a).
+ cut (forall (a: M) (a0: T), m a0 = a -> Acc MR a0).
intros.
apply (H (m a))...
apply (@well_founded_ind M R wf (fun mm => forall a, m a = mm -> Acc MR a)).