diff options
Diffstat (limited to 'theories')
-rw-r--r-- | theories/FSets/FMapInterface.v | 6 | ||||
-rw-r--r-- | theories/FSets/FSetInterface.v | 6 | ||||
-rw-r--r-- | theories/MSets/MSetInterface.v | 18 | ||||
-rw-r--r-- | theories/Numbers/Integer/Abstract/ZBase.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Integer/Abstract/ZProperties.v | 2 | ||||
-rw-r--r-- | theories/Numbers/NatInt/NZAddOrder.v | 2 | ||||
-rw-r--r-- | theories/Numbers/NatInt/NZMul.v | 2 | ||||
-rw-r--r-- | theories/Numbers/NatInt/NZMulOrder.v | 2 | ||||
-rw-r--r-- | theories/Numbers/NatInt/NZOrder.v | 5 | ||||
-rw-r--r-- | theories/Numbers/Natural/Abstract/NBase.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Natural/Abstract/NProperties.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Natural/Abstract/NStrongRec.v | 2 | ||||
-rw-r--r-- | theories/Structures/OrderTac.v | 4 | ||||
-rw-r--r-- | theories/Structures/OrderedType.v | 2 | ||||
-rw-r--r-- | theories/Structures/OrderedType2.v | 2 |
15 files changed, 29 insertions, 30 deletions
diff --git a/theories/FSets/FMapInterface.v b/theories/FSets/FMapInterface.v index cd51b2aff..e60cca9d9 100644 --- a/theories/FSets/FMapInterface.v +++ b/theories/FSets/FMapInterface.v @@ -258,7 +258,7 @@ End WSfun. Module Type WS. Declare Module E : DecidableType. - Include Type WSfun E. + Include WSfun E. End WS. @@ -266,7 +266,7 @@ End WS. (** ** Maps on ordered keys, functorial signature *) Module Type Sfun (E : OrderedType). - Include Type WSfun E. + Include WSfun E. Section elt. Variable elt:Type. Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p'). @@ -284,7 +284,7 @@ End Sfun. Module Type S. Declare Module E : OrderedType. - Include Type Sfun E. + Include Sfun E. End S. diff --git a/theories/FSets/FSetInterface.v b/theories/FSets/FSetInterface.v index d94ff7c95..8aede5527 100644 --- a/theories/FSets/FSetInterface.v +++ b/theories/FSets/FSetInterface.v @@ -275,7 +275,7 @@ End WSfun. Module Type WS. Declare Module E : DecidableType. - Include Type WSfun E. + Include WSfun E. End WS. @@ -286,7 +286,7 @@ End WS. and some stronger specifications for other functions. *) Module Type Sfun (E : OrderedType). - Include Type WSfun E. + Include WSfun E. Parameter lt : t -> t -> Prop. Parameter compare : forall s s' : t, Compare lt eq s s'. @@ -349,7 +349,7 @@ End Sfun. Module Type S. Declare Module E : OrderedType. - Include Type Sfun E. + Include Sfun E. End S. diff --git a/theories/MSets/MSetInterface.v b/theories/MSets/MSetInterface.v index effd5e35a..cb18785e6 100644 --- a/theories/MSets/MSetInterface.v +++ b/theories/MSets/MSetInterface.v @@ -117,7 +117,7 @@ End HasWOps. Module Type WOps (E : DecidableType). Definition elt := E.t. Parameter t : Type. (** the abstract type of sets *) - Include Type HasWOps. + Include HasWOps. End WOps. @@ -128,7 +128,7 @@ End WOps. Module Type WSetsOn (E : DecidableType). (** First, we ask for all the functions *) - Include Type WOps E. + Include WOps E. (** Logical predicates *) Parameter In : elt -> t -> Prop. @@ -144,8 +144,8 @@ Module Type WSetsOn (E : DecidableType). Notation "s [<=] t" := (Subset s t) (at level 70, no associativity). Definition eq : t -> t -> Prop := Equal. - Include Type IsEq. (** [eq] is obviously an equivalence, for subtyping only *) - Include Type HasEqDec. + Include IsEq. (** [eq] is obviously an equivalence, for subtyping only *) + Include HasEqDec. (** Specifications of set operators *) @@ -197,7 +197,7 @@ End WSetsOn. Module Type WSets. Declare Module E : DecidableType. - Include Type WSetsOn E. + Include WSetsOn E. End WSets. (** ** Functorial signature for sets on ordered elements @@ -226,7 +226,7 @@ Module Type Ops (E : OrderedType) := WOps E <+ HasOrdOps. Module Type SetsOn (E : OrderedType). - Include Type WSetsOn E <+ HasOrdOps <+ HasLt <+ IsStrOrder. + Include WSetsOn E <+ HasOrdOps <+ HasLt <+ IsStrOrder. Section Spec. Variable s s': t. @@ -266,7 +266,7 @@ End SetsOn. Module Type Sets. Declare Module E : OrderedType. - Include Type SetsOn E. + Include SetsOn E. End Sets. Module Type S := Sets. @@ -335,7 +335,7 @@ Module WS_WSfun (M : WSets) <: WSetsOn M.E := M. Module Type WRawSets (E : DecidableType). (** First, we ask for all the functions *) - Include Type WOps E. + Include WOps E. (** Is a set well-formed or ill-formed ? *) @@ -559,7 +559,7 @@ End WRaw2Sets. (** Same approach for ordered sets *) Module Type RawSets (E : OrderedType). - Include Type WRawSets E <+ HasOrdOps <+ HasLt <+ IsStrOrder. + Include WRawSets E <+ HasOrdOps <+ HasLt <+ IsStrOrder. Section Spec. Variable s s': t. diff --git a/theories/Numbers/Integer/Abstract/ZBase.v b/theories/Numbers/Integer/Abstract/ZBase.v index 9b5a80762..44bb02ecc 100644 --- a/theories/Numbers/Integer/Abstract/ZBase.v +++ b/theories/Numbers/Integer/Abstract/ZBase.v @@ -15,7 +15,7 @@ Require Export ZAxioms. Require Import NZProperties. Module ZBasePropFunct (Import Z : ZAxiomsSig'). -Include Type NZPropFunct Z. +Include NZPropFunct Z. (* Theorems that are true for integers but not for natural numbers *) diff --git a/theories/Numbers/Integer/Abstract/ZProperties.v b/theories/Numbers/Integer/Abstract/ZProperties.v index 7f2253205..9b6f0ff64 100644 --- a/theories/Numbers/Integer/Abstract/ZProperties.v +++ b/theories/Numbers/Integer/Abstract/ZProperties.v @@ -18,6 +18,6 @@ Require Export ZAxioms ZMulOrder. Module Type ZPropSig := ZMulOrderPropFunct. Module ZPropFunct (Z:ZAxiomsSig) <: ZPropSig Z. - Include Type ZPropSig Z. + Include ZPropSig Z. End ZPropFunct. diff --git a/theories/Numbers/NatInt/NZAddOrder.v b/theories/Numbers/NatInt/NZAddOrder.v index 7313c4131..97c122029 100644 --- a/theories/Numbers/NatInt/NZAddOrder.v +++ b/theories/Numbers/NatInt/NZAddOrder.v @@ -13,7 +13,7 @@ Require Import NZAxioms NZBase NZMul NZOrder. Module Type NZAddOrderPropSig (Import NZ : NZOrdAxiomsSig'). -Include Type NZBasePropSig NZ <+ NZMulPropSig NZ <+ NZOrderPropSig NZ. +Include NZBasePropSig NZ <+ NZMulPropSig NZ <+ NZOrderPropSig NZ. Theorem add_lt_mono_l : forall n m p, n < m <-> p + n < p + m. Proof. diff --git a/theories/Numbers/NatInt/NZMul.v b/theories/Numbers/NatInt/NZMul.v index 3c11024e5..296bd095f 100644 --- a/theories/Numbers/NatInt/NZMul.v +++ b/theories/Numbers/NatInt/NZMul.v @@ -14,7 +14,7 @@ Require Import NZAxioms NZBase NZAdd. Module Type NZMulPropSig (Import NZ : NZAxiomsSig')(Import NZBase : NZBasePropSig NZ). -Include Type NZAddPropSig NZ NZBase. +Include NZAddPropSig NZ NZBase. Theorem mul_0_r : forall n, n * 0 == 0. Proof. diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v index 18f61de59..7b64a6983 100644 --- a/theories/Numbers/NatInt/NZMulOrder.v +++ b/theories/Numbers/NatInt/NZMulOrder.v @@ -14,7 +14,7 @@ Require Import NZAxioms. Require Import NZAddOrder. Module Type NZMulOrderPropSig (Import NZ : NZOrdAxiomsSig'). -Include Type NZAddOrderPropSig NZ. +Include NZAddOrderPropSig NZ. Theorem mul_lt_pred : forall p q n m, S p == q -> (p * n < p * m <-> q * n + m < q * m + n). diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v index 6697c0b3d..6a086f3bd 100644 --- a/theories/Numbers/NatInt/NZOrder.v +++ b/theories/Numbers/NatInt/NZOrder.v @@ -611,7 +611,6 @@ End WF. End NZOrderPropSig. -Module NZOrderPropFunct (Import NZ : NZOrdSig). - Include Type NZBasePropSig NZ <+ NZOrderPropSig NZ. -End NZOrderPropFunct. +Module NZOrderPropFunct (NZ : NZOrdSig) := + NZBasePropSig NZ <+ NZOrderPropSig NZ. diff --git a/theories/Numbers/Natural/Abstract/NBase.v b/theories/Numbers/Natural/Abstract/NBase.v index 0d489a16d..842f4bcf2 100644 --- a/theories/Numbers/Natural/Abstract/NBase.v +++ b/theories/Numbers/Natural/Abstract/NBase.v @@ -16,7 +16,7 @@ Require Import NZProperties. Module NBasePropFunct (Import N : NAxiomsSig'). (** First, we import all known facts about both natural numbers and integers. *) -Include Type NZPropFunct N. +Include NZPropFunct N. (** We prove that the successor of a number is not zero by defining a function (by recursion) that maps 0 to false and the successor to true *) diff --git a/theories/Numbers/Natural/Abstract/NProperties.v b/theories/Numbers/Natural/Abstract/NProperties.v index 2baed54cf..30262bd9f 100644 --- a/theories/Numbers/Natural/Abstract/NProperties.v +++ b/theories/Numbers/Natural/Abstract/NProperties.v @@ -18,5 +18,5 @@ Require Export NAxioms NSub. Module Type NPropSig := NSubPropFunct. Module NPropFunct (N:NAxiomsSig) <: NPropSig N. - Include Type NPropSig N. + Include NPropSig N. End NPropFunct. diff --git a/theories/Numbers/Natural/Abstract/NStrongRec.v b/theories/Numbers/Natural/Abstract/NStrongRec.v index ed867b825..cbbcdbff5 100644 --- a/theories/Numbers/Natural/Abstract/NStrongRec.v +++ b/theories/Numbers/Natural/Abstract/NStrongRec.v @@ -16,7 +16,7 @@ and proves its properties *) Require Export NSub. Module NStrongRecPropFunct (Import N : NAxiomsSig'). -Include Type NSubPropFunct N. +Include NSubPropFunct N. Section StrongRecursion. diff --git a/theories/Structures/OrderTac.v b/theories/Structures/OrderTac.v index 43df377c0..2465dc539 100644 --- a/theories/Structures/OrderTac.v +++ b/theories/Structures/OrderTac.v @@ -53,7 +53,7 @@ Local Infix "+" := trans_ord. Module Type TotalOrder_NoInline <: TotalOrder. Parameter Inline t : Type. Parameters eq lt le : t -> t -> Prop. - Include Type IsEq <+ IsStrOrder <+ LeIsLtEq <+ LtIsTotal. + Include IsEq <+ IsStrOrder <+ LeIsLtEq <+ LtIsTotal. End TotalOrder_NoInline. Module Type TotalOrder_NoInline' := TotalOrder_NoInline <+ EqLtLeNotation. @@ -302,7 +302,7 @@ Definition t := O.t. Definition eq := O.eq. Definition lt := flip O.lt. Definition le := flip O.le. -Include Type EqLtLeNotation. +Include EqLtLeNotation. Instance eq_equiv : Equivalence eq. diff --git a/theories/Structures/OrderedType.v b/theories/Structures/OrderedType.v index ca441fc86..1f3e50dc3 100644 --- a/theories/Structures/OrderedType.v +++ b/theories/Structures/OrderedType.v @@ -41,7 +41,7 @@ Module Type MiniOrderedType. End MiniOrderedType. Module Type OrderedType. - Include Type MiniOrderedType. + Include MiniOrderedType. (** A [eq_dec] can be deduced from [compare] below. But adding this redundant field allows to see an OrderedType as a DecidableType. *) diff --git a/theories/Structures/OrderedType2.v b/theories/Structures/OrderedType2.v index 1cddfea3b..766b0faf0 100644 --- a/theories/Structures/OrderedType2.v +++ b/theories/Structures/OrderedType2.v @@ -43,7 +43,7 @@ Module Type LeNotation (E:EqLe). End LeNotation. Module Type LtLeNotation (E:EqLtLe). - Include Type LtNotation E <+ LeNotation E. + Include LtNotation E <+ LeNotation E. Notation "x <= y < z" := (x<=y /\ y<z). Notation "x < y <= z" := (x<y /\ y<=z). End LtLeNotation. |