aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
Diffstat (limited to 'theories')
-rw-r--r--theories/Arith/Compare_dec.v16
-rw-r--r--theories/Classes/Morphisms.v2
2 files changed, 9 insertions, 9 deletions
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v
index deb6f229b..d696360fd 100644
--- a/theories/Arith/Compare_dec.v
+++ b/theories/Arith/Compare_dec.v
@@ -22,17 +22,17 @@ Definition zerop n : {n = 0} + {0 < n}.
Defined.
Definition lt_eq_lt_dec n m : {n < m} + {n = m} + {m < n}.
- induction n; simple destruct m; auto with arith.
- intros m0; elim (IHn m0); auto with arith.
- induction 1; auto with arith.
+ intros; induction n in m |- *; destruct m; auto with arith.
+ destruct (IHn m) as [H|H]; auto with arith.
+ destruct H; auto with arith.
Defined.
Definition gt_eq_gt_dec n m : {m > n} + {n = m} + {n > m}.
- exact lt_eq_lt_dec.
+ intros; apply lt_eq_lt_dec; assumption.
Defined.
Definition le_lt_dec n m : {n <= m} + {m < n}.
- induction n.
+ intros; induction n in m |- *.
auto with arith.
destruct m.
auto with arith.
@@ -40,7 +40,7 @@ Definition le_lt_dec n m : {n <= m} + {m < n}.
Defined.
Definition le_le_S_dec n m : {n <= m} + {S m <= n}.
- exact le_lt_dec.
+ intros; exact (le_lt_dec n m).
Defined.
Definition le_ge_dec n m : {n <= m} + {n >= m}.
@@ -48,11 +48,11 @@ Definition le_ge_dec n m : {n <= m} + {n >= m}.
Defined.
Definition le_gt_dec n m : {n <= m} + {n > m}.
- exact le_lt_dec.
+ intros; exact (le_lt_dec n m).
Defined.
Definition le_lt_eq_dec n m : n <= m -> {n < m} + {n = m}.
- intros; elim (lt_eq_lt_dec n m); auto with arith.
+ intros; destruct (lt_eq_lt_dec n m); auto with arith.
intros; absurd (m < n); auto with arith.
Defined.
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
index f5d08edb4..f66fa87b6 100644
--- a/theories/Classes/Morphisms.v
+++ b/theories/Classes/Morphisms.v
@@ -406,7 +406,7 @@ Qed.
Lemma inverse_arrow `(NA : Normalizes A R (inverse R'''), NB : Normalizes B R' (inverse R'')) :
Normalizes (A -> B) (R ==> R') (inverse (R''' ==> R'')%signature).
-Proof. unfold Normalizes. intros.
+Proof. unfold Normalizes in *. intros.
rewrite NA, NB. firstorder.
Qed.