aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories
diff options
context:
space:
mode:
Diffstat (limited to 'theories')
-rw-r--r--theories/Arith/Div2.v4
-rw-r--r--theories/Arith/Even.v4
-rw-r--r--theories/Arith/PeanoNat.v10
-rw-r--r--theories/PArith/BinPos.v2
-rw-r--r--theories/Sorting/Heap.v4
5 files changed, 12 insertions, 12 deletions
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v
index 42956c475..a5e457831 100644
--- a/theories/Arith/Div2.v
+++ b/theories/Arith/Div2.v
@@ -30,7 +30,7 @@ Lemma ind_0_1_SS :
P 0 -> P 1 -> (forall n, P n -> P (S (S n))) -> forall n, P n.
Proof.
intros P H0 H1 H2.
- fix 1.
+ fix ind_0_1_SS 1.
destruct n as [|[|n]].
- exact H0.
- exact H1.
@@ -105,7 +105,7 @@ Hint Resolve double_S: arith.
Lemma even_odd_double n :
(even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))).
Proof.
- revert n. fix 1. destruct n as [|[|n]].
+ revert n. fix even_odd_double 1. destruct n as [|[|n]].
- (* n = 0 *)
split; split; auto with arith. inversion 1.
- (* n = 1 *)
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index baf119732..a1d0e9fcc 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -38,7 +38,7 @@ Hint Constructors odd: arith.
Lemma even_equiv : forall n, even n <-> Nat.Even n.
Proof.
- fix 1.
+ fix even_equiv 1.
destruct n as [|[|n]]; simpl.
- split; [now exists 0 | constructor].
- split.
@@ -52,7 +52,7 @@ Qed.
Lemma odd_equiv : forall n, odd n <-> Nat.Odd n.
Proof.
- fix 1.
+ fix odd_equiv 1.
destruct n as [|[|n]]; simpl.
- split.
+ inversion_clear 1.
diff --git a/theories/Arith/PeanoNat.v b/theories/Arith/PeanoNat.v
index 4e4938a99..bc58995fd 100644
--- a/theories/Arith/PeanoNat.v
+++ b/theories/Arith/PeanoNat.v
@@ -315,7 +315,7 @@ Import Private_Parity.
Lemma even_spec : forall n, even n = true <-> Even n.
Proof.
- fix 1.
+ fix even_spec 1.
destruct n as [|[|n]]; simpl.
- split; [ now exists 0 | trivial ].
- split; [ discriminate | intro H; elim (Even_1 H) ].
@@ -325,7 +325,7 @@ Qed.
Lemma odd_spec : forall n, odd n = true <-> Odd n.
Proof.
unfold odd.
- fix 1.
+ fix odd_spec 1.
destruct n as [|[|n]]; simpl.
- split; [ discriminate | intro H; elim (Odd_0 H) ].
- split; [ now exists 0 | trivial ].
@@ -473,7 +473,7 @@ Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.
Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
Proof.
- fix 1.
+ fix gcd_divide 1.
intros [|a] b; simpl.
split.
now exists 0.
@@ -502,7 +502,7 @@ Qed.
Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
Proof.
- fix 1.
+ fix gcd_greatest 1.
intros [|a] b; simpl; auto.
fold (b mod (S a)).
intros c H H'. apply gcd_greatest; auto.
@@ -536,7 +536,7 @@ Qed.
Lemma le_div2 n : div2 (S n) <= n.
Proof.
revert n.
- fix 1.
+ fix le_div2 1.
destruct n; simpl; trivial. apply lt_succ_r.
destruct n; [simpl|]; trivial. now constructor.
Qed.
diff --git a/theories/PArith/BinPos.v b/theories/PArith/BinPos.v
index 8d0896db7..000d895e1 100644
--- a/theories/PArith/BinPos.v
+++ b/theories/PArith/BinPos.v
@@ -1655,7 +1655,7 @@ Qed.
Lemma sqrtrem_spec p : SqrtSpec (sqrtrem p) p.
Proof.
-revert p. fix 1.
+revert p. fix sqrtrem_spec 1.
destruct p; try destruct p; try (constructor; easy);
apply sqrtrem_step_spec; auto.
Qed.
diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v
index d9e5ad676..2ef162be4 100644
--- a/theories/Sorting/Heap.v
+++ b/theories/Sorting/Heap.v
@@ -148,10 +148,10 @@ Section defs.
forall l1:list A, Sorted leA l1 ->
forall l2:list A, Sorted leA l2 -> merge_lem l1 l2.
Proof.
- fix 1; intros; destruct l1.
+ fix merge 1; intros; destruct l1.
apply merge_exist with l2; auto with datatypes.
rename l1 into l.
- revert l2 H0. fix 1. intros.
+ revert l2 H0. fix merge0 1. intros.
destruct l2 as [|a0 l0].
apply merge_exist with (a :: l); simpl; auto with datatypes.
induction (leA_dec a a0) as [Hle|Hle].