diff options
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Arith/Peano_dec.v | 6 | ||||
-rw-r--r-- | theories/FSets/FMapAVL.v | 18 | ||||
-rw-r--r-- | theories/FSets/FMapFullAVL.v | 8 | ||||
-rw-r--r-- | theories/FSets/FMapPositive.v | 6 | ||||
-rw-r--r-- | theories/FSets/FSetBridge.v | 8 | ||||
-rw-r--r-- | theories/FSets/FSetInterface.v | 2 | ||||
-rw-r--r-- | theories/Init/Specif.v | 8 | ||||
-rw-r--r-- | theories/Logic/Eqdep_dec.v | 2 | ||||
-rw-r--r-- | theories/NArith/Ndigits.v | 6 | ||||
-rw-r--r-- | theories/Reals/RiemannInt_SF.v | 2 | ||||
-rw-r--r-- | theories/Vectors/Fin.v | 56 | ||||
-rw-r--r-- | theories/Vectors/VectorDef.v | 16 | ||||
-rw-r--r-- | theories/ZArith/Zsqrt_compat.v | 12 |
13 files changed, 75 insertions, 75 deletions
diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v index e0bed0d37..9b8ebfe55 100644 --- a/theories/Arith/Peano_dec.v +++ b/theories/Arith/Peano_dec.v @@ -38,15 +38,15 @@ Lemma le_unique: forall m n (h1 h2: m <= n), h1 = h2. Proof. fix 3. refine (fun m _ h1 => match h1 as h' in _ <= k return forall hh: m <= k, h' = hh - with le_n => _ |le_S i H => _ end). + with le_n _ => _ |le_S _ i H => _ end). refine (fun hh => match hh as h' in _ <= k return forall eq: m = k, le_n m = match eq in _ = p return m <= p -> m <= m with |eq_refl => fun bli => bli end h' with - |le_n => fun eq => _ |le_S j H' => fun eq => _ end eq_refl). + |le_n _ => fun eq => _ |le_S _ j H' => fun eq => _ end eq_refl). rewrite (UIP_nat _ _ eq eq_refl). reflexivity. subst m. destruct (Lt.lt_irrefl j H'). refine (fun hh => match hh as h' in _ <= k return match k as k' return m <= k' -> Prop with |0 => fun _ => True |S i' => fun h'' => forall H':m <= i', le_S m i' H' = h'' end h' - with |le_n => _ |le_S j H2 => fun H' => _ end H). + with |le_n _ => _ |le_S _ j H2 => fun H' => _ end H). destruct m. exact I. intros; destruct (Lt.lt_irrefl m H'). f_equal. apply le_unique. Qed. diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v index f42f1e9e0..5d34a4bf5 100644 --- a/theories/FSets/FMapAVL.v +++ b/theories/FSets/FMapAVL.v @@ -342,7 +342,7 @@ Notation "t #r" := (t_right t) (at level 9, format "t '#r'"). Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' := match m with - | Leaf => Leaf _ + | Leaf _ => Leaf _ | Node l x d r h => Node (map f l) x (f d) (map f r) h end. @@ -350,7 +350,7 @@ Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' := Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' := match m with - | Leaf => Leaf _ + | Leaf _ => Leaf _ | Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h end. @@ -359,7 +359,7 @@ Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' := Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt) : t elt' := match m with - | Leaf => Leaf _ + | Leaf _ => Leaf _ | Node l x d r h => match f x d with | Some d' => join (map_option f l) x d' (map_option f r) @@ -389,8 +389,8 @@ Variable mapr : t elt' -> t elt''. Fixpoint map2_opt m1 m2 := match m1, m2 with - | Leaf, _ => mapr m2 - | _, Leaf => mapl m1 + | Leaf _, _ => mapr m2 + | _, Leaf _ => mapl m1 | Node l1 x1 d1 r1 h1, _ => let (l2',o2,r2') := split x1 m2 in match f x1 d1 o2 with @@ -1424,7 +1424,7 @@ Qed. i.e. the list of elements actually compared *) Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with - | End => nil + | End _ => nil | More x e t r => (x,e) :: elements t ++ flatten_e r end. @@ -2016,7 +2016,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 := match e2 with - | R.End => Gt + | R.End _ => Gt | R.More x2 d2 r2 e2 => match X.compare x1 x2 with | EQ _ => match D.compare d1 d2 with @@ -2033,7 +2033,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 := match s1 with - | R.Leaf => cont e2 + | R.Leaf _ => cont e2 | R.Node l1 x1 d1 r1 _ => compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2 end. @@ -2041,7 +2041,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: (** Initial continuation *) Definition compare_end (e2:R.enumeration D.t) := - match e2 with R.End => Eq | _ => Lt end. + match e2 with R.End _ => Eq | _ => Lt end. (** The complete comparison *) diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v index e1c603514..59b778369 100644 --- a/theories/FSets/FMapFullAVL.v +++ b/theories/FSets/FMapFullAVL.v @@ -660,7 +660,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: Fixpoint cardinal_e (e:Raw.enumeration D.t) := match e with - | Raw.End => 0%nat + | Raw.End _ => 0%nat | Raw.More _ _ r e => S (Raw.cardinal r + cardinal_e e) end. @@ -677,9 +677,9 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <: Function compare_aux (ee:Raw.enumeration D.t * Raw.enumeration D.t) { measure cardinal_e_2 ee } : comparison := match ee with - | (Raw.End, Raw.End) => Eq - | (Raw.End, Raw.More _ _ _ _) => Lt - | (Raw.More _ _ _ _, Raw.End) => Gt + | (Raw.End _, Raw.End _) => Eq + | (Raw.End _, Raw.More _ _ _ _) => Lt + | (Raw.More _ _ _ _, Raw.End _) => Gt | (Raw.More x1 d1 r1 e1, Raw.More x2 d2 r2 e2) => match X.compare x1 x2 with | EQ _ => match D.compare d1 d2 with diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v index d562245d8..5e968d4d3 100644 --- a/theories/FSets/FMapPositive.v +++ b/theories/FSets/FMapPositive.v @@ -902,7 +902,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits. Fixpoint xfoldi (m : t A) (v : B) (i : positive) := match m with - | Leaf => v + | Leaf _ => v | Node l (Some x) r => xfoldi r (f i x (xfoldi l v (append i 2))) (append i 3) | Node l None r => @@ -940,8 +940,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits. Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool := match m1, m2 with - | Leaf, _ => is_empty m2 - | _, Leaf => is_empty m1 + | Leaf _, _ => is_empty m2 + | _, Leaf _ => is_empty m1 | Node l1 o1 r1, Node l2 o2 r2 => (match o1, o2 with | None, None => true diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v index 1ac544e1f..6aebcf501 100644 --- a/theories/FSets/FSetBridge.v +++ b/theories/FSets/FSetBridge.v @@ -284,7 +284,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E. Lemma choose_equal : forall s s', Equal s s' -> match choose s, choose s' with - | inleft (exist x _), inleft (exist x' _) => E.eq x x' + | inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x' | inright _, inright _ => True | _, _ => False end. @@ -423,7 +423,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Definition choose (s : t) : option elt := match choose s with - | inleft (exist x _) => Some x + | inleft (exist _ x _) => Some x | inright _ => None end. @@ -472,7 +472,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Definition min_elt (s : t) : option elt := match min_elt s with - | inleft (exist x _) => Some x + | inleft (exist _ x _) => Some x | inright _ => None end. @@ -500,7 +500,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Definition max_elt (s : t) : option elt := match max_elt s with - | inleft (exist x _) => Some x + | inleft (exist _ x _) => Some x | inright _ => None end. diff --git a/theories/FSets/FSetInterface.v b/theories/FSets/FSetInterface.v index a03611193..c791f49a6 100644 --- a/theories/FSets/FSetInterface.v +++ b/theories/FSets/FSetInterface.v @@ -497,7 +497,7 @@ Module Type Sdep. in the dependent version of [choose], so we leave it separate. *) Parameter choose_equal : forall s s', Equal s s' -> match choose s, choose s' with - | inleft (exist x _), inleft (exist x' _) => E.eq x x' + | inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x' | inright _, inright _ => True | _, _ => False end. diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v index d1610f0a1..6adc1c369 100644 --- a/theories/Init/Specif.v +++ b/theories/Init/Specif.v @@ -72,12 +72,12 @@ Section Subset_projections. Variable P : A -> Prop. Definition proj1_sig (e:sig P) := match e with - | exist a b => a + | exist _ a b => a end. Definition proj2_sig (e:sig P) := match e return P (proj1_sig e) with - | exist a b => b + | exist _ a b => b end. End Subset_projections. @@ -96,11 +96,11 @@ Section Projections. Variable P : A -> Type. Definition projT1 (x:sigT P) : A := match x with - | existT a _ => a + | existT _ a _ => a end. Definition projT2 (x:sigT P) : P (projT1 x) := match x return P (projT1 x) with - | existT _ h => h + | existT _ _ h => h end. End Projections. diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v index ea5b16517..9bde2d641 100644 --- a/theories/Logic/Eqdep_dec.v +++ b/theories/Logic/Eqdep_dec.v @@ -101,7 +101,7 @@ Section EqdepDec. Let proj (P:A -> Prop) (exP:ex P) (def:P x) : P x := match exP with - | ex_intro x' prf => + | ex_intro _ x' prf => match eq_dec x' x with | or_introl eqprf => eq_ind x' P prf x eqprf | _ => def diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v index b50adaab8..662c50abf 100644 --- a/theories/NArith/Ndigits.v +++ b/theories/NArith/Ndigits.v @@ -512,9 +512,9 @@ Definition N2Bv (n:N) : Bvector (N.size_nat n) := Fixpoint Bv2N (n:nat)(bv:Bvector n) : N := match bv with - | Vector.nil => N0 - | Vector.cons false n bv => N.double (Bv2N n bv) - | Vector.cons true n bv => N.succ_double (Bv2N n bv) + | Vector.nil _ => N0 + | Vector.cons _ false n bv => N.double (Bv2N n bv) + | Vector.cons _ true n bv => N.succ_double (Bv2N n bv) end. Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n. diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v index d523a1f44..9de60bb5d 100644 --- a/theories/Reals/RiemannInt_SF.v +++ b/theories/Reals/RiemannInt_SF.v @@ -144,7 +144,7 @@ Definition subdivision (a b:R) (f:StepFun a b) : Rlist := projT1 (pre f). Definition subdivision_val (a b:R) (f:StepFun a b) : Rlist := match projT2 (pre f) with - | existT a b => a + | existT _ a b => a end. Fixpoint Int_SF (l k:Rlist) : R := diff --git a/theories/Vectors/Fin.v b/theories/Vectors/Fin.v index ae33e6318..b6ec6307c 100644 --- a/theories/Vectors/Fin.v +++ b/theories/Vectors/Fin.v @@ -23,14 +23,14 @@ Inductive t : nat -> Set := Section SCHEMES. Definition case0 P (p: t 0): P p := - match p with | F1 _ | FS _ _ => fun devil => False_rect (@ID) devil (* subterm !!! *) end. + match p with | F1 | FS _ => fun devil => False_rect (@ID) devil (* subterm !!! *) end. Definition caseS (P: forall {n}, t (S n) -> Type) (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p)) {n} (p: t (S n)): P p := match p with - |F1 k => P1 k - |FS k pp => PS pp + |@F1 k => P1 k + |FS pp => PS pp end. Definition rectS (P: forall {n}, t (S n) -> Type) @@ -38,9 +38,9 @@ Definition rectS (P: forall {n}, t (S n) -> Type) forall {n} (p: t (S n)), P p := fix rectS_fix {n} (p: t (S n)): P p:= match p with - |F1 k => P1 k - |FS 0 pp => case0 (fun f => P (FS f)) pp - |FS (S k) pp => PS pp (rectS_fix pp) + |@F1 k => P1 k + |@FS 0 pp => case0 (fun f => P (FS f)) pp + |@FS (S k) pp => PS pp (rectS_fix pp) end. Definition rect2 (P: forall {n} (a b: t n), Type) @@ -51,14 +51,14 @@ Definition rect2 (P: forall {n} (a b: t n), Type) forall {n} (a b: t n), P a b := fix rect2_fix {n} (a: t n): forall (b: t n), P a b := match a with - |F1 m => fun (b: t (S m)) => match b as b' in t (S n') + |@F1 m => fun (b: t (S m)) => match b as b' in t (S n') return P F1 b' with - |F1 m' => H0 m' - |FS m' b' => H1 b' + |@F1 m' => H0 m' + |FS b' => H1 b' end - |FS m a' => fun (b: t (S m)) => match b with - |F1 m' => fun aa: t m' => H2 aa - |FS m' b' => fun aa: t m' => HS aa b' (rect2_fix aa b') + |@FS m a' => fun (b: t (S m)) => match b with + |@F1 m' => fun aa: t m' => H2 aa + |FS b' => fun aa => HS aa b' (rect2_fix aa b') end a' end. End SCHEMES. @@ -66,15 +66,15 @@ End SCHEMES. Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y := match eq in _ = a return match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end - with @F1 _ => fun _ => True |@FS _ y => fun x' => x' = y end x with + with F1 => fun _ => True |FS y => fun x' => x' = y end x with eq_refl => eq_refl end. (** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *) Fixpoint to_nat {m} (n : t m) : {i | i < m} := match n with - |F1 j => exist _ 0 (Lt.lt_0_Sn j) - |FS _ p => match to_nat p with |exist i P => exist _ (S i) (Lt.lt_n_S _ _ P) end + |@F1 j => exist _ 0 (Lt.lt_0_Sn j) + |FS p => match to_nat p with |exist _ i P => exist _ (S i) (Lt.lt_n_S _ _ P) end end. (** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of @@ -86,7 +86,7 @@ Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } := |0 => inleft _ (F1) |S p' => match of_nat p' n' with |inleft f => inleft _ (FS f) - |inright arg => inright _ (match arg with |ex_intro m e => + |inright arg => inright _ (match arg with |ex_intro _ m e => ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end) end end @@ -118,15 +118,15 @@ Fixpoint weak {m}{n} p (f : t m -> t n) : match p as p' return t (p' + m) -> t (p' + n) with |0 => f |S p' => fun x => match x with - |F1 n' => fun eq : n' = p' + m => F1 - |FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq)) + |@F1 n' => fun eq : n' = p' + m => F1 + |@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq)) end (eq_refl _) end. (** The p{^ th} element of [fin m] viewed as the p{^ th} element of [fin (m + n)] *) Fixpoint L {m} n (p : t m) : t (m + n) := - match p with |F1 _ => F1 |FS _ p' => FS (L n p') end. + match p with |F1 => F1 |FS p' => FS (L n p') end. Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p). Proof. @@ -144,8 +144,8 @@ induction n. exact p. exact ((fix LS k (p: t k) := match p with - |F1 k' => @F1 (S k') - |FS _ p' => FS (LS _ p') + |@F1 k' => @F1 (S k') + |FS p' => FS (LS _ p') end) _ IHn). Defined. @@ -163,8 +163,8 @@ Qed. Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) := match o with - |F1 m' => L (m' * n) p - |FS m' o' => R n (depair o' p) + |@F1 m' => L (m' * n) p + |FS o' => R n (depair o' p) end. Lemma depair_sanity {m n} (o : t m) (p : t n) : @@ -181,9 +181,9 @@ Qed. Fixpoint eqb {m n} (p : t m) (q : t n) := match p, q with | @F1 m', @F1 n' => EqNat.beq_nat m' n' -| @FS _ _, @F1 _ => false -| @F1 _, @FS _ _ => false -| @FS _ p', @FS _ q' => eqb p' q' +| FS _, F1 => false +| F1, FS _ => false +| FS p', FS q' => eqb p' q' end. Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n. @@ -219,11 +219,11 @@ Definition cast: forall {m} (v: t m) {n}, m = n -> t n. Proof. refine (fix cast {m} (v: t m) {struct v} := match v in t m' return forall n, m' = n -> t n with - |@F1 _ => fun n => match n with + |F1 => fun n => match n with | 0 => fun H => False_rect _ _ | S n' => fun H => F1 end - |@FS _ f => fun n => match n with + |FS f => fun n => match n with | 0 => fun H => False_rect _ _ | S n' => fun H => FS (cast f n' (f_equal pred H)) end diff --git a/theories/Vectors/VectorDef.v b/theories/Vectors/VectorDef.v index 30a8c5699..64c69ba24 100644 --- a/theories/Vectors/VectorDef.v +++ b/theories/Vectors/VectorDef.v @@ -40,12 +40,12 @@ Definition rectS {A} (P:forall {n}, t A (S n) -> Type) (rect: forall a {n} (v: t A (S n)), P v -> P (a :: v)) := fix rectS_fix {n} (v: t A (S n)) : P v := match v with - |cons a 0 v => + |@cons _ a 0 v => match v with - |nil => bas a + |nil _ => bas a |_ => fun devil => False_rect (@ID) devil (* subterm !!! *) end - |cons a (S nn') v => rect a v (rectS_fix v) + |@cons _ a (S nn') v => rect a v (rectS_fix v) |_ => fun devil => False_rect (@ID) devil (* subterm !!! *) end. @@ -109,8 +109,8 @@ ocaml function. *) Definition nth {A} := fix nth_fix {m} (v' : t A m) (p : Fin.t m) {struct v'} : A := match p in Fin.t m' return t A m' -> A with - |Fin.F1 q => fun v => caseS (fun n v' => A) (fun h n t => h) v - |Fin.FS q p' => fun v => (caseS (fun n v' => Fin.t n -> A) + |Fin.F1 => fun v => caseS (fun n v' => A) (fun h n t => h) v + |Fin.FS p' => fun v => (caseS (fun n v' => Fin.t n -> A) (fun h n t p0 => nth_fix t p0) v) p' end v'. @@ -121,8 +121,8 @@ Definition nth_order {A} {n} (v: t A n) {p} (H: p < n) := (** Put [a] at the p{^ th} place of [v] *) Fixpoint replace {A n} (v : t A n) (p: Fin.t n) (a : A) {struct p}: t A n := match p with - |Fin.F1 k => fun v': t A (S k) => caseS (fun n _ => t A (S n)) (fun h _ t => a :: t) v' - |Fin.FS k p' => fun v' => + |@Fin.F1 k => fun v': t A (S k) => caseS (fun n _ => t A (S n)) (fun h _ t => a :: t) v' + |Fin.FS p' => fun v' => (caseS (fun n _ => Fin.t n -> t A (S n)) (fun h _ t p2 => h :: (replace t p2 a)) v') p' end v. @@ -251,7 +251,7 @@ match v in t _ n0 return t C n0 -> A with |[] => a |_ => fun devil => False_rect (@ID) devil (* subterm !!! *) end - |cons vh vn vt => fun w => match w with + |@cons _ vh vn vt => fun w => match w with |wh :: wt => fun vt' => fold_left2_fix (f a vh wh) vt' wt |_ => fun devil => False_rect (@ID) devil (* subterm !!! *) end vt diff --git a/theories/ZArith/Zsqrt_compat.v b/theories/ZArith/Zsqrt_compat.v index a6c832412..9e8d9372c 100644 --- a/theories/ZArith/Zsqrt_compat.v +++ b/theories/ZArith/Zsqrt_compat.v @@ -53,7 +53,7 @@ Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p). | xI xH => c_sqrt 3 1 2 _ _ | xO (xO p') => match sqrtrempos p' with - | c_sqrt s' r' Heq Hint => + | c_sqrt _ s' r' Heq Hint => match Z_le_gt_dec (4 * s' + 1) (4 * r') with | left Hle => c_sqrt (Zpos (xO (xO p'))) (2 * s' + 1) @@ -63,7 +63,7 @@ Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p). end | xO (xI p') => match sqrtrempos p' with - | c_sqrt s' r' Heq Hint => + | c_sqrt _ s' r' Heq Hint => match Z_le_gt_dec (4 * s' + 1) (4 * r' + 2) with | left Hle => c_sqrt (Zpos (xO (xI p'))) (2 * s' + 1) @@ -74,7 +74,7 @@ Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p). end | xI (xO p') => match sqrtrempos p' with - | c_sqrt s' r' Heq Hint => + | c_sqrt _ s' r' Heq Hint => match Z_le_gt_dec (4 * s' + 1) (4 * r' + 1) with | left Hle => c_sqrt (Zpos (xI (xO p'))) (2 * s' + 1) @@ -85,7 +85,7 @@ Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p). end | xI (xI p') => match sqrtrempos p' with - | c_sqrt s' r' Heq Hint => + | c_sqrt _ s' r' Heq Hint => match Z_le_gt_dec (4 * s' + 1) (4 * r' + 3) with | left Hle => c_sqrt (Zpos (xI (xI p'))) (2 * s' + 1) @@ -114,7 +114,7 @@ Definition Zsqrt : | Zpos p => fun h => match sqrtrempos p with - | c_sqrt s r Heq Hint => + | c_sqrt _ s r Heq Hint => existT (fun s:Z => {r : Z | @@ -150,7 +150,7 @@ Definition Zsqrt_plain (x:Z) : Z := match x with | Zpos p => match Zsqrt (Zpos p) (Pos2Z.is_nonneg p) with - | existT s _ => s + | existT _ s _ => s end | Zneg p => 0 | Z0 => 0 |