diff options
Diffstat (limited to 'theories')
-rw-r--r-- | theories/FSets/FMapAVL.v | 2 | ||||
-rw-r--r-- | theories/MSets/MSetGenTree.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Natural/Abstract/NStrongRec.v | 2 | ||||
-rw-r--r-- | theories/Program/Subset.v | 2 | ||||
-rw-r--r-- | theories/QArith/Qcanon.v | 4 |
5 files changed, 6 insertions, 6 deletions
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v index 980cfeac6..a603751b2 100644 --- a/theories/FSets/FMapAVL.v +++ b/theories/FSets/FMapAVL.v @@ -533,7 +533,7 @@ Ltac order := match goal with | _ => MX.order end. -Ltac intuition_in := repeat progress (intuition; inv In; inv MapsTo). +Ltac intuition_in := repeat (intuition; inv In; inv MapsTo). (* Function/Functional Scheme can't deal with internal fix. Let's do its job by hand: *) diff --git a/theories/MSets/MSetGenTree.v b/theories/MSets/MSetGenTree.v index 704ff31be..cacd91343 100644 --- a/theories/MSets/MSetGenTree.v +++ b/theories/MSets/MSetGenTree.v @@ -378,7 +378,7 @@ Ltac invtree f := Ltac inv := inv_ok; invtree InT. -Ltac intuition_in := repeat progress (intuition; inv). +Ltac intuition_in := repeat (intuition; inv). (** Helper tactic concerning order of elements. *) diff --git a/theories/Numbers/Natural/Abstract/NStrongRec.v b/theories/Numbers/Natural/Abstract/NStrongRec.v index e4cbf0902..67cab5507 100644 --- a/theories/Numbers/Natural/Abstract/NStrongRec.v +++ b/theories/Numbers/Natural/Abstract/NStrongRec.v @@ -13,7 +13,7 @@ and proves its properties *) Require Export NSub. -Ltac f_equiv' := repeat progress (f_equiv; try intros ? ? ?; auto). +Ltac f_equiv' := repeat (f_equiv; try intros ? ? ?; auto). Module NStrongRecProp (Import N : NAxiomsRecSig'). Include NSubProp N. diff --git a/theories/Program/Subset.v b/theories/Program/Subset.v index e0bbf0694..35521ec6d 100644 --- a/theories/Program/Subset.v +++ b/theories/Program/Subset.v @@ -61,7 +61,7 @@ Ltac pi_subset_proofs := repeat pi_subset_proof. Ltac clear_subset_proofs := abstract_subset_proofs ; simpl in * |- ; pi_subset_proofs ; clear_dups. -Ltac pi := repeat progress f_equal ; apply proof_irrelevance. +Ltac pi := repeat f_equal ; apply proof_irrelevance. Lemma subset_eq : forall A (P : A -> Prop) (n m : sig P), n = m <-> `n = `m. Proof. diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v index d1160cbe4..1826b607d 100644 --- a/theories/QArith/Qcanon.v +++ b/theories/QArith/Qcanon.v @@ -434,14 +434,14 @@ Qed. Lemma Qcmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y. Proof. unfold Qcmult, Qcle, Qclt; intros; simpl in *. - repeat progress rewrite Qred_correct in * |-. + rewrite !Qred_correct in * |-. eapply Qmult_lt_0_le_reg_r; eauto. Qed. Lemma Qcmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z. Proof. unfold Qcmult, Qclt; intros; simpl in *. - repeat progress rewrite Qred_correct in *. + rewrite !Qred_correct in *. eapply Qmult_lt_compat_r; eauto. Qed. |