diff options
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Reals/DiscrR.v | 5 | ||||
-rw-r--r-- | theories/Reals/RIneq.v | 11 | ||||
-rw-r--r-- | theories/Reals/Ranalysis5.v | 16 |
3 files changed, 15 insertions, 17 deletions
diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v index 05911cd53..7f26c1b86 100644 --- a/theories/Reals/DiscrR.v +++ b/theories/Reals/DiscrR.v @@ -22,11 +22,6 @@ Proof. intros; rewrite H; reflexivity. Qed. -Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2. -Proof. -intros; red; intro; elim H; apply eq_IZR; assumption. -Qed. - Ltac discrR := try match goal with diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v index 7e1cc3e03..711703ad7 100644 --- a/theories/Reals/RIneq.v +++ b/theories/Reals/RIneq.v @@ -1926,6 +1926,17 @@ Proof. omega. Qed. +Lemma IZR_neq : forall z1 z2:Z, z1 <> z2 -> IZR z1 <> IZR z2. +Proof. +intros; red; intro; elim H; apply eq_IZR; assumption. +Qed. + +Hint Extern 0 (IZR _ <= IZR _) => apply IZR_le, Zle_bool_imp_le, eq_refl : real. +Hint Extern 0 (IZR _ >= IZR _) => apply Rle_ge, IZR_le, Zle_bool_imp_le, eq_refl : real. +Hint Extern 0 (IZR _ < IZR _) => apply IZR_lt, eq_refl : real. +Hint Extern 0 (IZR _ > IZR _) => apply IZR_lt, eq_refl : real. +Hint Extern 0 (IZR _ <> IZR _) => apply IZR_neq, Zeq_bool_neq, eq_refl : real. + Lemma one_IZR_lt1 : forall n:Z, -1 < IZR n < 1 -> n = 0%Z. Proof. intros z [H1 H2]. diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v index f9da88aad..ccb4207ba 100644 --- a/theories/Reals/Ranalysis5.v +++ b/theories/Reals/Ranalysis5.v @@ -15,6 +15,7 @@ Require Import RiemannInt. Require Import SeqProp. Require Import Max. Require Import Omega. +Require Import Lra. Local Open Scope R_scope. (** * Preliminaries lemmas *) @@ -245,14 +246,8 @@ Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat), x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y. Proof. assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub). - intros x y lb ub Hyp. - split. - replace lb with ((lb + lb) * /2) by field. - unfold Rdiv ; apply Rmult_le_compat_r ; intuition. - now apply Rlt_le, Rinv_0_lt_compat, IZR_lt. - replace ub with ((ub + ub) * /2) by field. - unfold Rdiv ; apply Rmult_le_compat_r ; intuition. - now apply Rlt_le, Rinv_0_lt_compat, IZR_lt. + intros x y lb ub Hyp. + lra. intros x y P N x_lt_y. induction N. simpl ; intuition. @@ -1029,10 +1024,7 @@ Qed. Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2. Proof. intros x ub lb lb_lt_x x_lt_ub. - assert (T : 0 < ub - lb). - fourier. - unfold Rdiv ; apply Rlt_mult_inv_pos ; intuition. -now apply IZR_lt. +lra. Qed. Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal. |