diff options
Diffstat (limited to 'theories')
-rw-r--r-- | theories/Numbers/Cyclic/Abstract/CyclicAxioms.v | 22 | ||||
-rw-r--r-- | theories/Numbers/Cyclic/Int31/Int31.v | 2 | ||||
-rw-r--r-- | theories/Numbers/Cyclic/ZModulo/ZModulo.v | 992 |
3 files changed, 1004 insertions, 12 deletions
diff --git a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v index ed14cc799..4bd2331e1 100644 --- a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v +++ b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v @@ -36,17 +36,17 @@ Section Z_nZ_Op. znz_digits : positive; znz_zdigits: znz; znz_to_Z : znz -> Z; - znz_of_pos : positive -> N * znz; - znz_head0 : znz -> znz; - znz_tail0 : znz -> znz; + znz_of_pos : positive -> N * znz; (* Euclidean division by [2^digits] *) + znz_head0 : znz -> znz; (* number of digits 0 in front of the number *) + znz_tail0 : znz -> znz; (* number of digits 0 at the bottom of the number *) (* Basic constructors *) znz_0 : znz; znz_1 : znz; znz_Bm1 : znz; (* [2^digits-1], which is equivalent to [-1] *) - znz_WW : znz -> znz -> zn2z znz; - znz_W0 : znz -> zn2z znz; - znz_0W : znz -> zn2z znz; + znz_WW : znz -> znz -> zn2z znz; (* from high and low words to a double word *) + znz_W0 : znz -> zn2z znz; (* same, with null low word *) + znz_0W : znz -> zn2z znz; (* same, with null high word *) (* Comparison *) znz_compare : znz -> znz -> comparison; @@ -76,16 +76,16 @@ Section Z_nZ_Op. znz_square_c : znz -> zn2z znz; (* Special divisions operations *) - znz_div21 : znz -> znz -> znz -> znz*znz; - znz_div_gt : znz -> znz -> znz * znz; + znz_div21 : znz -> znz -> znz -> znz*znz; (* very ad-hoc ?? *) + znz_div_gt : znz -> znz -> znz * znz; (* why this one ? *) znz_div : znz -> znz -> znz * znz; - znz_mod_gt : znz -> znz -> znz; + znz_mod_gt : znz -> znz -> znz; (* why this one ? *) znz_mod : znz -> znz -> znz; - znz_gcd_gt : znz -> znz -> znz; + znz_gcd_gt : znz -> znz -> znz; (* why this one ? *) znz_gcd : znz -> znz -> znz; - znz_add_mul_div : znz -> znz -> znz -> znz; + znz_add_mul_div : znz -> znz -> znz -> znz; (* very ad-hoc *) znz_pos_mod : znz -> znz -> znz; (* square root *) diff --git a/theories/Numbers/Cyclic/Int31/Int31.v b/theories/Numbers/Cyclic/Int31/Int31.v index e5b5f0d86..eb2531182 100644 --- a/theories/Numbers/Cyclic/Int31/Int31.v +++ b/theories/Numbers/Cyclic/Int31/Int31.v @@ -257,7 +257,7 @@ Definition iter_int31 i A f x := i x . -(* [addmuldiv31 p i j] = i*2^p+y/2^(31-p) (modulo 2^31) *) +(* [addmuldiv31 p i j] = i*2^p+j/2^(31-p) (modulo 2^31) *) Definition addmuldiv31 p i j := let (res, _ ) := iter_int31 p (int31*int31) (fun ij => let (i,j) := ij in diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v new file mode 100644 index 000000000..c3f3eed08 --- /dev/null +++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v @@ -0,0 +1,992 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id$ *) + +(** * Type [Z] viewed modulo a particular constant corresponds to [Z/nZ] + as defined abstractly in CyclicAxioms. *) + +(** Even if the construction provided here is not reused for building + the efficient arbitrary precision numbers, it provides a simple + implementation of CyclicAxioms, hence ensuring its coherence. *) + +Set Implicit Arguments. + +Require Import Bool. +Require Import ZArith. +Require Import Znumtheory. +Require Import BigNumPrelude. +Require Import DoubleType. +Require Import CyclicAxioms. + +Open Local Scope Z_scope. + +Section ZModulo. + + Variable digits : positive. + Hypothesis digits_ne_1 : digits <> 1%positive. + + Definition wB := base digits. + + Definition znz := Z. + Definition znz_digits := digits. + Definition znz_zdigits := Zpos digits. + Definition znz_to_Z x := x mod wB. + + Notation "[| x |]" := (znz_to_Z x) (at level 0, x at level 99). + + Notation "[+| c |]" := + (interp_carry 1 wB znz_to_Z c) (at level 0, x at level 99). + + Notation "[-| c |]" := + (interp_carry (-1) wB znz_to_Z c) (at level 0, x at level 99). + + Notation "[|| x ||]" := + (zn2z_to_Z wB znz_to_Z x) (at level 0, x at level 99). + + Lemma spec_more_than_1_digit: 1 < Zpos digits. + Proof. + unfold znz_digits. + generalize digits_ne_1; destruct digits; auto. + destruct 1; auto. + Qed. + Let digits_gt_1 := spec_more_than_1_digit. + + Lemma wB_pos : wB > 0. + Proof. + unfold wB, base; auto with zarith. + Qed. + Hint Resolve wB_pos. + + Lemma spec_to_Z_1 : forall x, 0 <= [|x|]. + Proof. + unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto. + Qed. + + Lemma spec_to_Z_2 : forall x, [|x|] < wB. + Proof. + unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto. + Qed. + Hint Resolve spec_to_Z_1 spec_to_Z_2. + + Lemma spec_to_Z : forall x, 0 <= [|x|] < wB. + Proof. + auto. + Qed. + + Definition znz_of_pos x := + let (q,r) := Zdiv_eucl_POS x wB in (N_of_Z q, r). + + Lemma spec_of_pos : forall p, + Zpos p = (Z_of_N (fst (znz_of_pos p)))*wB + [|(snd (znz_of_pos p))|]. + Proof. + intros; unfold znz_of_pos; simpl. + generalize (Z_div_mod_POS wB wB_pos p). + destruct (Zdiv_eucl_POS p wB); simpl; destruct 1. + unfold znz_to_Z; rewrite Zmod_small; auto. + assert (0 <= z). + replace z with (Zpos p / wB) by + (symmetry; apply Zdiv_unique with z0; auto). + apply Z_div_pos; auto with zarith. + replace (Z_of_N (N_of_Z z)) with z by + (destruct z; simpl; auto; elim H1; auto). + rewrite Zmult_comm; auto. + Qed. + + Lemma spec_zdigits : [|znz_zdigits|] = Zpos znz_digits. + Proof. + unfold znz_to_Z, znz_zdigits, znz_digits. + apply Zmod_small. + unfold wB, base. + split; auto with zarith. + apply Zpower2_lt_lin; auto with zarith. + Qed. + + Definition znz_0 := 0. + Definition znz_1 := 1. + Definition znz_Bm1 := wB - 1. + + Lemma spec_0 : [|znz_0|] = 0. + Proof. + unfold znz_to_Z, znz_0. + apply Zmod_small; generalize wB_pos; auto with zarith. + Qed. + + Lemma spec_1 : [|znz_1|] = 1. + Proof. + unfold znz_to_Z, znz_1. + apply Zmod_small; split; auto with zarith. + unfold wB, base. + apply Zlt_trans with (Zpos digits); auto. + apply Zpower2_lt_lin; auto with zarith. + Qed. + + Lemma spec_Bm1 : [|znz_Bm1|] = wB - 1. + Proof. + unfold znz_to_Z, znz_Bm1. + apply Zmod_small; split; auto with zarith. + unfold wB, base. + cut (1 <= 2 ^ Zpos digits); auto with zarith. + apply Zle_trans with (Zpos digits); auto with zarith. + apply Zpower2_le_lin; auto with zarith. + Qed. + + Definition znz_compare x y := Zcompare [|x|] [|y|]. + + Lemma spec_compare : forall x y, + match znz_compare x y with + | Eq => [|x|] = [|y|] + | Lt => [|x|] < [|y|] + | Gt => [|x|] > [|y|] + end. + Proof. + intros; unfold znz_compare, Zlt, Zgt. + case_eq (Zcompare [|x|] [|y|]); auto. + intros; apply Zcompare_Eq_eq; auto. + Qed. + + Definition znz_eq0 x := + match [|x|] with Z0 => true | _ => false end. + + Lemma spec_eq0 : forall x, znz_eq0 x = true -> [|x|] = 0. + Proof. + unfold znz_eq0; intros; now destruct [|x|]. + Qed. + + Definition znz_WW h l := + if znz_eq0 h && znz_eq0 l then W0 else WW h l. + + Lemma spec_WW : forall h l, [||znz_WW h l||] = [|h|] * wB + [|l|]. + Proof. + intros; unfold znz_WW. + case_eq (znz_eq0 h); intros; simpl; auto. + case_eq (znz_eq0 l); intros; simpl; auto. + rewrite 2 spec_eq0; auto. + Qed. + + Definition znz_0W l := if znz_eq0 l then W0 else WW 0 l. + + Lemma spec_0W : forall l, [||znz_0W l||] = [|l|]. + Proof. + intros; unfold znz_0W. + case_eq (znz_eq0 l); intros; simpl; auto. + rewrite spec_eq0; auto. + Qed. + + Definition znz_W0 h := if znz_eq0 h then W0 else WW h 0. + + Lemma spec_W0 : forall h, [||znz_W0 h||] = [|h|]*wB. + Proof. + intros; unfold znz_W0. + case_eq (znz_eq0 h); intros; simpl; auto with zarith. + rewrite spec_eq0; auto with zarith. + Qed. + + Definition znz_opp_c x := + if znz_eq0 x then C0 0 else C1 (- x). + Definition znz_opp x := - x. + Definition znz_opp_carry x := - x - 1. + + Lemma spec_opp_c : forall x, [-|znz_opp_c x|] = -[|x|]. + Proof. + intros; unfold znz_opp_c, znz_to_Z; auto. + case_eq (znz_eq0 x); intros; unfold interp_carry. + fold [|x|]; rewrite (spec_eq0 x H); auto. + assert (x mod wB <> 0). + unfold znz_eq0, znz_to_Z in H. + intro H0; rewrite H0 in H; discriminate. + rewrite Z_mod_nz_opp_full; auto with zarith. + Qed. + + Lemma spec_opp : forall x, [|znz_opp x|] = (-[|x|]) mod wB. + Proof. + intros; unfold znz_opp, znz_to_Z; auto. + change ((- x) mod wB = (0 - (x mod wB)) mod wB). + rewrite Zminus_mod_idemp_r; simpl; auto. + Qed. + + Lemma spec_opp_carry : forall x, [|znz_opp_carry x|] = wB - [|x|] - 1. + Proof. + intros; unfold znz_opp_carry, znz_to_Z; auto. + replace (- x - 1) with (- 1 - x) by omega. + rewrite <- Zminus_mod_idemp_r. + replace ( -1 - x mod wB) with (0 + ( -1 - x mod wB)) by omega. + rewrite <- (Z_mod_same_full wB). + rewrite Zplus_mod_idemp_l. + replace (wB + (-1 - x mod wB)) with (wB - x mod wB -1) by omega. + apply Zmod_small. + generalize (Z_mod_lt x wB wB_pos); omega. + Qed. + + Definition znz_succ_c x := + let y := Zsucc x in + if znz_eq0 y then C1 0 else C0 y. + + Definition znz_add_c x y := + let z := [|x|] + [|y|] in + if Z_lt_le_dec z wB then C0 z else C1 (z-wB). + + Definition znz_add_carry_c x y := + let z := [|x|]+[|y|]+1 in + if Z_lt_le_dec z wB then C0 z else C1 (z-wB). + + Definition znz_succ := Zsucc. + Definition znz_add := Zplus. + Definition znz_add_carry x y := x + y + 1. + + Lemma Zmod_equal : + forall x y z, z>0 -> (x-y) mod z = 0 -> x mod z = y mod z. + Proof. + intros. + generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Zplus_0_r. + remember ((x-y)/z) as k. + intros H1; symmetry in H1; rewrite <- Zeq_plus_swap in H1. + subst x. + rewrite Zplus_comm, Zmult_comm, Z_mod_plus; auto. + Qed. + + Lemma spec_succ_c : forall x, [+|znz_succ_c x|] = [|x|] + 1. + Proof. + intros; unfold znz_succ_c, znz_to_Z, Zsucc. + case_eq (znz_eq0 (x+1)); intros; unfold interp_carry. + + rewrite Zmult_1_l. + replace (wB + 0 mod wB) with wB by auto with zarith. + symmetry; rewrite Zeq_plus_swap. + assert ((x+1) mod wB = 0) by (apply spec_eq0; auto). + replace (wB-1) with ((wB-1) mod wB) by + (apply Zmod_small; generalize wB_pos; omega). + rewrite <- Zminus_mod_idemp_l; rewrite Z_mod_same; simpl; auto. + apply Zmod_equal; auto. + + assert ((x+1) mod wB <> 0). + unfold znz_eq0, znz_to_Z in *; now destruct ((x+1) mod wB). + assert (x mod wB + 1 <> wB). + contradict H0. + rewrite Zeq_plus_swap in H0; simpl in H0. + rewrite <- Zplus_mod_idemp_l; rewrite H0. + replace (wB-1+1) with wB; auto with zarith; apply Z_mod_same; auto. + rewrite <- Zplus_mod_idemp_l. + apply Zmod_small. + generalize (Z_mod_lt x wB wB_pos); omega. + Qed. + + Lemma spec_add_c : forall x y, [+|znz_add_c x y|] = [|x|] + [|y|]. + Proof. + intros; unfold znz_add_c, znz_to_Z, interp_carry. + destruct Z_lt_le_dec. + apply Zmod_small; + generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. + apply Zmod_small; + generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + Qed. + + Lemma spec_add_carry_c : forall x y, [+|znz_add_carry_c x y|] = [|x|] + [|y|] + 1. + Proof. + intros; unfold znz_add_carry_c, znz_to_Z, interp_carry. + destruct Z_lt_le_dec. + apply Zmod_small; + generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. + apply Zmod_small; + generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + Qed. + + Lemma spec_succ : forall x, [|znz_succ x|] = ([|x|] + 1) mod wB. + Proof. + intros; unfold znz_succ, znz_to_Z, Zsucc. + symmetry; apply Zplus_mod_idemp_l. + Qed. + + Lemma spec_add : forall x y, [|znz_add x y|] = ([|x|] + [|y|]) mod wB. + Proof. + intros; unfold znz_add, znz_to_Z; apply Zplus_mod. + Qed. + + Lemma spec_add_carry : + forall x y, [|znz_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB. + Proof. + intros; unfold znz_add_carry, znz_to_Z. + rewrite <- Zplus_mod_idemp_l. + rewrite (Zplus_mod x y). + rewrite Zplus_mod_idemp_l; auto. + Qed. + + Definition znz_pred_c x := + if znz_eq0 x then C1 (wB-1) else C0 (x-1). + + Definition znz_sub_c x y := + let z := [|x|]-[|y|] in + if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z. + + Definition znz_sub_carry_c x y := + let z := [|x|]-[|y|]-1 in + if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z. + + Definition znz_pred := Zpred. + Definition znz_sub := Zminus. + Definition znz_sub_carry x y := x - y - 1. + + Lemma spec_pred_c : forall x, [-|znz_pred_c x|] = [|x|] - 1. + Proof. + intros; unfold znz_pred_c, znz_to_Z, interp_carry. + case_eq (znz_eq0 x); intros. + fold [|x|]; rewrite spec_eq0; auto. + replace ((wB-1) mod wB) with (wB-1); auto with zarith. + symmetry; apply Zmod_small; generalize wB_pos; omega. + + assert (x mod wB <> 0). + unfold znz_eq0, znz_to_Z in *; now destruct (x mod wB). + rewrite <- Zminus_mod_idemp_l. + apply Zmod_small. + generalize (Z_mod_lt x wB wB_pos); omega. + Qed. + + Lemma spec_sub_c : forall x y, [-|znz_sub_c x y|] = [|x|] - [|y|]. + Proof. + intros; unfold znz_sub_c, znz_to_Z, interp_carry. + destruct Z_lt_le_dec. + replace ((wB + (x mod wB - y mod wB)) mod wB) with + (wB + (x mod wB - y mod wB)). + omega. + symmetry; apply Zmod_small. + generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + + apply Zmod_small. + generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + Qed. + + Lemma spec_sub_carry_c : forall x y, [-|znz_sub_carry_c x y|] = [|x|] - [|y|] - 1. + Proof. + intros; unfold znz_sub_carry_c, znz_to_Z, interp_carry. + destruct Z_lt_le_dec. + replace ((wB + (x mod wB - y mod wB - 1)) mod wB) with + (wB + (x mod wB - y mod wB -1)). + omega. + symmetry; apply Zmod_small. + generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + + apply Zmod_small. + generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. + Qed. + + Lemma spec_pred : forall x, [|znz_pred x|] = ([|x|] - 1) mod wB. + Proof. + intros; unfold znz_pred, znz_to_Z, Zpred. + rewrite <- Zplus_mod_idemp_l; auto. + Qed. + + Lemma spec_sub : forall x y, [|znz_sub x y|] = ([|x|] - [|y|]) mod wB. + Proof. + intros; unfold znz_sub, znz_to_Z; apply Zminus_mod. + Qed. + + Lemma spec_sub_carry : + forall x y, [|znz_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB. + Proof. + intros; unfold znz_sub_carry, znz_to_Z. + rewrite <- Zminus_mod_idemp_l. + rewrite (Zminus_mod x y). + rewrite Zminus_mod_idemp_l. + auto. + Qed. + + Definition znz_mul_c x y := + let (h,l) := Zdiv_eucl ([|x|]*[|y|]) wB in + znz_WW h l. + + Definition znz_mul := Zmult. + + Definition znz_square_c x := znz_mul_c x x. + + Lemma spec_mul_c : forall x y, [|| znz_mul_c x y ||] = [|x|] * [|y|]. + Proof. + intros; unfold znz_mul_c, zn2z_to_Z, znz_WW. + assert (Zdiv_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)). + unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. + generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Zdiv_eucl as (h,l). + destruct 1; injection H; clear H; intros. + rewrite H0. + assert ([|l|] = l). + apply Zmod_small; auto. + assert ([|h|] = h). + apply Zmod_small. + subst h. + split. + apply Z_div_pos; auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + apply Zmult_lt_compat; auto with zarith. + clear H H0 H1 H2. + case_eq (znz_eq0 h); simpl; intros. + case_eq (znz_eq0 l); simpl; intros. + rewrite <- H3, <- H4, (spec_eq0 h), (spec_eq0 l); auto with zarith. + rewrite H3, H4; auto with zarith. + rewrite H3, H4; auto with zarith. + Qed. + + Lemma spec_mul : forall x y, [|znz_mul x y|] = ([|x|] * [|y|]) mod wB. + Proof. + intros; unfold znz_mul, znz_to_Z; apply Zmult_mod. + Qed. + + Lemma spec_square_c : forall x, [|| znz_square_c x||] = [|x|] * [|x|]. + Proof. + intros x; exact (spec_mul_c x x). + Qed. + + Definition znz_div x y := Zdiv_eucl [|x|] [|y|]. + + Lemma spec_div : forall a b, 0 < [|b|] -> + let (q,r) := znz_div a b in + [|a|] = [|q|] * [|b|] + [|r|] /\ + 0 <= [|r|] < [|b|]. + Proof. + intros; unfold znz_div. + assert ([|b|]>0) by auto with zarith. + assert (Zdiv_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])). + unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. + generalize (Z_div_mod [|a|] [|b|] H0). + destruct Zdiv_eucl as (q,r); destruct 1; intros. + injection H1; clear H1; intros. + assert ([|r|]=r). + apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; + auto with zarith. + assert ([|q|]=q). + apply Zmod_small. + subst q. + split. + apply Z_div_pos; auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + apply Zlt_le_trans with (wB*1). + rewrite Zmult_1_r; auto with zarith. + apply Zmult_le_compat; generalize wB_pos; auto with zarith. + rewrite H5, H6; rewrite Zmult_comm; auto with zarith. + Qed. + + Definition znz_div_gt := znz_div. + + Lemma spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> + let (q,r) := znz_div_gt a b in + [|a|] = [|q|] * [|b|] + [|r|] /\ + 0 <= [|r|] < [|b|]. + Proof. + intros. + apply spec_div; auto. + Qed. + + Definition znz_mod x y := [|x|] mod [|y|]. + Definition znz_mod_gt x y := [|x|] mod [|y|]. + + Lemma spec_mod : forall a b, 0 < [|b|] -> + [|znz_mod a b|] = [|a|] mod [|b|]. + Proof. + intros; unfold znz_mod. + apply Zmod_small. + assert ([|b|]>0) by auto with zarith. + generalize (Z_mod_lt [|a|] [|b|] H0) (Z_mod_lt b wB wB_pos). + fold [|b|]; omega. + Qed. + + Lemma spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> + [|znz_mod_gt a b|] = [|a|] mod [|b|]. + Proof. + intros; apply spec_mod; auto. + Qed. + + Definition znz_gcd x y := Zgcd [|x|] [|y|]. + Definition znz_gcd_gt x y := Zgcd [|x|] [|y|]. + + Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Zgcd a b <= Zmax a b. + Proof. + intros. + generalize (Zgcd_is_gcd a b); inversion_clear 1. + destruct H2; destruct H3; clear H4. + assert (H3:=Zgcd_is_pos a b). + destruct (Z_eq_dec (Zgcd a b) 0). + rewrite e; generalize (Zmax_spec a b); omega. + assert (0 <= q). + apply Zmult_le_reg_r with (Zgcd a b); auto with zarith. + destruct (Z_eq_dec q 0). + + subst q; simpl in *; subst a; simpl; auto. + generalize (Zmax_spec 0 b) (Zabs_spec b); omega. + + apply Zle_trans with a. + rewrite H1 at 2. + rewrite <- (Zmult_1_l (Zgcd a b)) at 1. + apply Zmult_le_compat; auto with zarith. + generalize (Zmax_spec a b); omega. + Qed. + + Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|znz_gcd a b|]. + Proof. + intros; unfold znz_gcd. + generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros. + fold [|a|] in *; fold [|b|] in *. + replace ([|Zgcd [|a|] [|b|]|]) with (Zgcd [|a|] [|b|]). + apply Zgcd_is_gcd. + symmetry; apply Zmod_small. + split. + apply Zgcd_is_pos. + apply Zle_lt_trans with (Zmax [|a|] [|b|]). + apply Zgcd_bound; auto with zarith. + generalize (Zmax_spec [|a|] [|b|]); omega. + Qed. + + Lemma spec_gcd_gt : forall a b, [|a|] > [|b|] -> + Zis_gcd [|a|] [|b|] [|znz_gcd_gt a b|]. + Proof. + intros. apply spec_gcd; auto. + Qed. + + Definition znz_div21 a1 a2 b := + Zdiv_eucl ([|a1|]*wB+[|a2|]) [|b|]. + + Lemma spec_div21 : forall a1 a2 b, + wB/2 <= [|b|] -> + [|a1|] < [|b|] -> + let (q,r) := znz_div21 a1 a2 b in + [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ + 0 <= [|r|] < [|b|]. + Proof. + intros; unfold znz_div21. + generalize (Z_mod_lt a1 wB wB_pos); fold [|a1|]; intros. + generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros. + assert ([|b|]>0) by auto with zarith. + remember ([|a1|]*wB+[|a2|]) as a. + assert (Zdiv_eucl a [|b|] = (a/[|b|], a mod [|b|])). + unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. + generalize (Z_div_mod a [|b|] H3). + destruct Zdiv_eucl as (q,r); destruct 1; intros. + injection H4; clear H4; intros. + assert ([|r|]=r). + apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; + auto with zarith. + assert ([|q|]=q). + apply Zmod_small. + subst q. + split. + apply Z_div_pos; auto with zarith. + subst a; auto with zarith. + apply Zdiv_lt_upper_bound; auto with zarith. + subst a; auto with zarith. + subst a. + replace (wB*[|b|]) with (([|b|]-1)*wB + wB) by ring. + apply Zlt_le_trans with ([|a1|]*wB+wB); auto with zarith. + rewrite H8, H9; rewrite Zmult_comm; auto with zarith. + Qed. + + Definition znz_add_mul_div p x y := + ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))). + Lemma spec_add_mul_div : forall x y p, + [|p|] <= Zpos znz_digits -> + [| znz_add_mul_div p x y |] = + ([|x|] * (2 ^ [|p|]) + + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))) mod wB. + Proof. + intros; unfold znz_add_mul_div; auto. + Qed. + + Definition znz_pos_mod p w := [|w|] mod (2 ^ [|p|]). + Lemma spec_pos_mod : forall w p, + [|znz_pos_mod p w|] = [|w|] mod (2 ^ [|p|]). + Proof. + intros; unfold znz_pos_mod. + apply Zmod_small. + generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros. + split. + destruct H; auto with zarith. + apply Zle_lt_trans with [|w|]; auto with zarith. + apply Zmod_le; auto with zarith. + Qed. + + Definition znz_is_even x := + if Z_eq_dec ([|x|] mod 2) 0 then true else false. + + Lemma spec_is_even : forall x, + if znz_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. + Proof. + intros; unfold znz_is_even; destruct Z_eq_dec; auto. + generalize (Z_mod_lt [|x|] 2); omega. + Qed. + + Lemma Zsquare_le : forall x, x <= x*x. + Proof. + intros. + destruct (Z_lt_le_dec 0 x). + pattern x at 1; rewrite <- (Zmult_1_l x). + apply Zmult_le_compat; auto with zarith. + apply Zle_trans with 0; auto with zarith. + rewrite <- Zmult_opp_opp. + apply Zmult_le_0_compat; auto with zarith. + Qed. + + Definition znz_sqrt x := Zsqrt_plain [|x|]. + Lemma spec_sqrt : forall x, + [|znz_sqrt x|] ^ 2 <= [|x|] < ([|znz_sqrt x|] + 1) ^ 2. + Proof. + intros. + unfold znz_sqrt. + repeat rewrite Zpower_2. + replace [|Zsqrt_plain [|x|]|] with (Zsqrt_plain [|x|]). + apply Zsqrt_interval; auto with zarith. + symmetry; apply Zmod_small. + split. + apply Zsqrt_plain_is_pos; auto with zarith. + + cut (Zsqrt_plain [|x|] <= (wB-1)); try omega. + rewrite <- (Zsqrt_square_id (wB-1)). + apply Zsqrt_le. + split; auto. + apply Zle_trans with (wB-1); auto with zarith. + generalize (spec_to_Z x); auto with zarith. + apply Zsquare_le. + generalize wB_pos; auto with zarith. + Qed. + + Definition znz_sqrt2 x y := + let z := [|x|]*wB+[|y|] in + match z with + | Z0 => (0, C0 0) + | Zpos p => + let (s,r,_,_) := sqrtrempos p in + (s, if Z_lt_le_dec r wB then C0 r else C1 (r-wB)) + | Zneg _ => (0, C0 0) + end. + + Lemma spec_sqrt2 : forall x y, + wB/ 4 <= [|x|] -> + let (s,r) := znz_sqrt2 x y in + [||WW x y||] = [|s|] ^ 2 + [+|r|] /\ + [+|r|] <= 2 * [|s|]. + Proof. + intros; unfold znz_sqrt2. + simpl zn2z_to_Z. + remember ([|x|]*wB+[|y|]) as z. + destruct z. + auto with zarith. + destruct sqrtrempos; intros. + assert (s < wB). + destruct (Z_lt_le_dec s wB); auto. + assert (wB * wB <= Zpos p). + rewrite e. + apply Zle_trans with (s*s); try omega. + apply Zmult_le_compat; generalize wB_pos; auto with zarith. + assert (Zpos p < wB*wB). + rewrite Heqz. + replace (wB*wB) with ((wB-1)*wB+wB) by ring. + apply Zplus_le_lt_compat; auto with zarith. + apply Zmult_le_compat; auto with zarith. + generalize (spec_to_Z x); auto with zarith. + generalize wB_pos; auto with zarith. + omega. + replace [|s|] with s by (symmetry; apply Zmod_small; auto with zarith). + destruct Z_lt_le_dec; unfold interp_carry. + replace [|r|] with r by (symmetry; apply Zmod_small; auto with zarith). + rewrite Zpower_2; auto with zarith. + replace [|r-wB|] with (r-wB) by (symmetry; apply Zmod_small; auto with zarith). + rewrite Zpower_2; omega. + + assert (0<=Zneg p). + rewrite Heqz; generalize wB_pos; auto with zarith. + compute in H0; elim H0; auto. + Qed. + + Lemma two_p_power2 : forall x, x>=0 -> two_p x = 2 ^ x. + Proof. + intros. + unfold two_p. + destruct x; simpl; auto. + apply two_power_pos_correct. + Qed. + + Definition znz_head0 x := match [|x|] with + | Z0 => znz_zdigits + | Zpos p => znz_zdigits - log_inf p - 1 + | _ => 0 + end. + + Lemma spec_head00: forall x, [|x|] = 0 -> [|znz_head0 x|] = Zpos znz_digits. + Proof. + unfold znz_head0; intros. + rewrite H; simpl. + apply spec_zdigits. + Qed. + + Lemma log_inf_bounded : forall x p, Zpos x < 2^p -> log_inf x < p. + Proof. + induction x; simpl; intros. + + assert (0 < p) by (destruct p; compute; auto with zarith; discriminate). + cut (log_inf x < p - 1); [omega| ]. + apply IHx. + change (Zpos x~1) with (2*(Zpos x)+1) in H. + replace p with (Zsucc (p-1)) in H; auto with zarith. + rewrite Zpower_Zsucc in H; auto with zarith. + + assert (0 < p) by (destruct p; compute; auto with zarith; discriminate). + cut (log_inf x < p - 1); [omega| ]. + apply IHx. + change (Zpos x~0) with (2*(Zpos x)) in H. + replace p with (Zsucc (p-1)) in H; auto with zarith. + rewrite Zpower_Zsucc in H; auto with zarith. + + simpl; intros; destruct p; compute; auto with zarith. + Qed. + + + Lemma spec_head0 : forall x, 0 < [|x|] -> + wB/ 2 <= 2 ^ ([|znz_head0 x|]) * [|x|] < wB. + Proof. + intros; unfold znz_head0. + generalize (spec_to_Z x). + destruct [|x|]; try discriminate. + intros. + destruct (log_inf_correct p). + rewrite 2 two_p_power2 in H2; auto with zarith. + assert (0 <= znz_zdigits - log_inf p - 1 < wB). + split. + cut (log_inf p < znz_zdigits); try omega. + unfold znz_zdigits. + unfold wB, base in *. + apply log_inf_bounded; auto with zarith. + apply Zlt_trans with znz_zdigits. + omega. + unfold znz_zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith. + + unfold znz_to_Z; rewrite (Zmod_small _ _ H3). + destruct H2. + split. + apply Zle_trans with (2^(znz_zdigits - log_inf p - 1)*(2^log_inf p)). + apply Zdiv_le_upper_bound; auto with zarith. + rewrite <- Zpower_exp; auto with zarith. + rewrite Zmult_comm; rewrite <- Zpower_Zsucc; auto with zarith. + replace (Zsucc (znz_zdigits - log_inf p -1 +log_inf p)) with znz_zdigits + by ring. + unfold wB, base, znz_zdigits; auto with zarith. + apply Zmult_le_compat; auto with zarith. + + apply Zlt_le_trans + with (2^(znz_zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))). + apply Zmult_lt_compat_l; auto with zarith. + rewrite <- Zpower_exp; auto with zarith. + replace (znz_zdigits - log_inf p -1 +Zsucc (log_inf p)) with znz_zdigits + by ring. + unfold wB, base, znz_zdigits; auto with zarith. + Qed. + + Fixpoint Ptail p := match p with + | xO p => (Ptail p)+1 + | _ => 0 + end. + + Lemma Ptail_pos : forall p, 0 <= Ptail p. + Proof. + induction p; simpl; auto with zarith. + Qed. + Hint Resolve Ptail_pos. + + Lemma Ptail_bounded : forall p d, Zpos p < 2^(Zpos d) -> Ptail p < Zpos d. + Proof. + induction p; try (compute; auto; fail). + intros; simpl. + assert (d <> xH). + intro; subst. + compute in H; destruct p; discriminate. + assert (Zsucc (Zpos (Ppred d)) = Zpos d). + simpl; f_equal. + rewrite <- Pplus_one_succ_r. + destruct (Psucc_pred d); auto. + rewrite H1 in H0; elim H0; auto. + assert (Ptail p < Zpos (Ppred d)). + apply IHp. + apply Zmult_lt_reg_r with 2; auto with zarith. + rewrite (Zmult_comm (Zpos p)). + change (2 * Zpos p) with (Zpos p~0). + rewrite Zmult_comm. + rewrite <- Zpower_Zsucc; auto with zarith. + rewrite H1; auto. + rewrite <- H1; omega. + Qed. + + Definition znz_tail0 x := + match [|x|] with + | Z0 => znz_zdigits + | Zpos p => Ptail p + | Zneg _ => 0 + end. + + Lemma spec_tail00: forall x, [|x|] = 0 -> [|znz_tail0 x|] = Zpos znz_digits. + Proof. + unfold znz_tail0; intros. + rewrite H; simpl. + apply spec_zdigits. + Qed. + + Lemma spec_tail0 : forall x, 0 < [|x|] -> + exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|znz_tail0 x|]). + Proof. + intros; unfold znz_tail0. + generalize (spec_to_Z x). + destruct [|x|]; try discriminate; intros. + assert ([|Ptail p|] = Ptail p). + apply Zmod_small. + split; auto. + unfold wB, base in *. + apply Zlt_trans with (Zpos digits). + apply Ptail_bounded; auto with zarith. + apply Zpower2_lt_lin; auto with zarith. + rewrite H1. + + clear; induction p. + exists (Zpos p); simpl; rewrite Pmult_1_r; auto with zarith. + destruct IHp as {y,Yp,Ye}. + exists y. + split; auto. + change (Zpos p~0) with (2*Zpos p). + rewrite Ye. + change (Ptail p~0) with (Zsucc (Ptail p)). + rewrite Zpower_Zsucc; auto; ring. + + exists 0; simpl; auto with zarith. + Qed. + + (** Let's now group everything in two records *) + + Definition zmod_op := mk_znz_op + (znz_digits : positive) + (znz_zdigits: znz) + (znz_to_Z : znz -> Z) + (znz_of_pos : positive -> N * znz) + (znz_head0 : znz -> znz) + (znz_tail0 : znz -> znz) + + (znz_0 : znz) + (znz_1 : znz) + (znz_Bm1 : znz) + (znz_WW : znz -> znz -> zn2z znz) + (znz_W0 : znz -> zn2z znz) + (znz_0W : znz -> zn2z znz) + + (znz_compare : znz -> znz -> comparison) + (znz_eq0 : znz -> bool) + + (znz_opp_c : znz -> carry znz) + (znz_opp : znz -> znz) + (znz_opp_carry : znz -> znz) + + (znz_succ_c : znz -> carry znz) + (znz_add_c : znz -> znz -> carry znz) + (znz_add_carry_c : znz -> znz -> carry znz) + (znz_succ : znz -> znz) + (znz_add : znz -> znz -> znz) + (znz_add_carry : znz -> znz -> znz) + + (znz_pred_c : znz -> carry znz) + (znz_sub_c : znz -> znz -> carry znz) + (znz_sub_carry_c : znz -> znz -> carry znz) + (znz_pred : znz -> znz) + (znz_sub : znz -> znz -> znz) + (znz_sub_carry : znz -> znz -> znz) + + (znz_mul_c : znz -> znz -> zn2z znz) + (znz_mul : znz -> znz -> znz) + (znz_square_c : znz -> zn2z znz) + + (znz_div21 : znz -> znz -> znz -> znz*znz) + (znz_div_gt : znz -> znz -> znz * znz) + (znz_div : znz -> znz -> znz * znz) + + (znz_mod_gt : znz -> znz -> znz) + (znz_mod : znz -> znz -> znz) + + (znz_gcd_gt : znz -> znz -> znz) + (znz_gcd : znz -> znz -> znz) + (znz_add_mul_div : znz -> znz -> znz -> znz) + (znz_pos_mod : znz -> znz -> znz) + + (znz_is_even : znz -> bool) + (znz_sqrt2 : znz -> znz -> znz * carry znz) + (znz_sqrt : znz -> znz). + + Definition zmod_spec := mk_znz_spec zmod_op + spec_to_Z + spec_of_pos + spec_zdigits + spec_more_than_1_digit + + spec_0 + spec_1 + spec_Bm1 + spec_WW + spec_0W + spec_W0 + + spec_compare + spec_eq0 + + spec_opp_c + spec_opp + spec_opp_carry + + spec_succ_c + spec_add_c + spec_add_carry_c + spec_succ + spec_add + spec_add_carry + + spec_pred_c + spec_sub_c + spec_sub_carry_c + spec_pred + spec_sub + spec_sub_carry + + spec_mul_c + spec_mul + spec_square_c + + spec_div21 + spec_div_gt + spec_div + + spec_mod_gt + spec_mod + + spec_gcd_gt + spec_gcd + + spec_head00 + spec_head0 + spec_tail00 + spec_tail0 + + spec_add_mul_div + spec_pos_mod + + spec_is_even + spec_sqrt2 + spec_sqrt. + +End ZModulo. + +(** A modular version of the previous construction. *) + +Module Type PositiveNotOne. + Parameter p : positive. + Axiom not_one : p<> 1%positive. +End PositiveNotOne. + +Module ZModuloCyclicType (P:PositiveNotOne) <: CyclicType. + Definition w := Z. + Definition w_op := zmod_op P.p. + Definition w_spec := zmod_spec P.not_one. +End ZModuloCyclicType. + |