aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories7/ZArith/auxiliary.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/auxiliary.v')
-rw-r--r--theories7/ZArith/auxiliary.v219
1 files changed, 0 insertions, 219 deletions
diff --git a/theories7/ZArith/auxiliary.v b/theories7/ZArith/auxiliary.v
deleted file mode 100644
index 53b9626ce..000000000
--- a/theories7/ZArith/auxiliary.v
+++ /dev/null
@@ -1,219 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id$ i*)
-
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
-
-Require Export Arith.
-Require BinInt.
-Require Zorder.
-Require Decidable.
-Require Peano_dec.
-Require Export Compare_dec.
-
-Open Local Scope Z_scope.
-
-(**********************************************************************)
-(** Moving terms from one side to the other of an inequality *)
-
-Theorem Zne_left : (x,y:Z) (Zne x y) -> (Zne (Zplus x (Zopp y)) ZERO).
-Proof.
-Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1;
-Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym;
-Trivial with arith.
-Qed.
-
-Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO.
-Proof.
-Intros x y H;
-Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute;
-Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption.
-Qed.
-
-Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))).
-Proof.
-Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
-Apply Zle_reg_r; Trivial.
-Apply Zplus_inverse_r.
-Qed.
-
-Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x)))
- -> (Zle x y).
-Proof.
-Intros x y H; Apply Zsimpl_le_plus_r with (Zopp x).
-Rewrite Zplus_inverse_r; Trivial.
-Qed.
-
-Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x)))
- -> (Zlt x y).
-Proof.
-Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x).
-Rewrite Zplus_inverse_r; Trivial.
-Qed.
-
-Theorem Zlt_left :
- (x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))).
-Proof.
-Intros x y H; Apply Zle_left; Apply Zle_S_n;
-Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S;
-Assumption.
-Qed.
-
-Theorem Zlt_left_lt :
- (x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))).
-Proof.
-Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
-Apply Zlt_reg_r; Trivial.
-Apply Zplus_inverse_r.
-Qed.
-
-Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))).
-Proof.
-Intros x y H; Apply Zle_left; Apply Zge_le; Assumption.
-Qed.
-
-Theorem Zgt_left :
- (x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))).
-Proof.
-Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption.
-Qed.
-
-Theorem Zgt_left_gt :
- (x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO).
-Proof.
-Intros x y H; Replace ZERO with (Zplus y (Zopp y)).
-Apply Zgt_reg_r; Trivial.
-Apply Zplus_inverse_r.
-Qed.
-
-Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO)
- -> (Zgt x y).
-Proof.
-Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y).
-Rewrite Zplus_inverse_r; Trivial.
-Qed.
-
-(**********************************************************************)
-(** Factorization lemmas *)
-
-Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)).
-Intro x; Rewrite (Zmult_n_1 x); Reflexivity.
-Qed.
-
-Theorem Zred_factor1 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))).
-Proof.
-Exact Zplus_Zmult_2.
-Qed.
-
-Theorem Zred_factor2 :
- (x,y:Z) (Zplus x (Zmult x y)) = (Zmult x (Zplus (POS xH) y)).
-
-Intros x y; Pattern 1 x ; Rewrite <- (Zmult_n_1 x);
-Rewrite <- Zmult_plus_distr_r; Trivial with arith.
-Qed.
-
-Theorem Zred_factor3 :
- (x,y:Z) (Zplus (Zmult x y) x) = (Zmult x (Zplus (POS xH) y)).
-
-Intros x y; Pattern 2 x ; Rewrite <- (Zmult_n_1 x);
-Rewrite <- Zmult_plus_distr_r; Rewrite Zplus_sym; Trivial with arith.
-Qed.
-Theorem Zred_factor4 :
- (x,y,z:Z) (Zplus (Zmult x y) (Zmult x z)) = (Zmult x (Zplus y z)).
-Intros x y z; Symmetry; Apply Zmult_plus_distr_r.
-Qed.
-
-Theorem Zred_factor5 : (x,y:Z) (Zplus (Zmult x ZERO) y) = y.
-
-Intros x y; Rewrite <- Zmult_n_O;Auto with arith.
-Qed.
-
-Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO).
-
-Intro; Rewrite Zero_right; Trivial with arith.
-Qed.
-
-Theorem Zle_mult_approx:
- (x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) ->
- (Zle ZERO (Zplus (Zmult y x) z)).
-
-Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [
- Apply Zle_mult; Assumption
-| Pattern 1 (Zmult y x) ; Rewrite <- Zero_right; Apply Zle_reg_l;
- Apply Zlt_le_weak; Apply Zgt_lt; Assumption].
-Qed.
-
-Theorem Zmult_le_approx:
- (x,y,z:Z) (Zgt x ZERO) -> (Zgt x z) ->
- (Zle ZERO (Zplus (Zmult y x) z)) -> (Zle ZERO y).
-
-Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply Zmult_lt with x; [
- Assumption
- | Apply Zle_lt_trans with 1:=H3 ; Rewrite <- Zmult_Sm_n;
- Apply Zlt_reg_l; Apply Zgt_lt; Assumption].
-
-Qed.
-
-V7only [
-(* Compatibility *)
-Require Znat.
-Require Zcompare.
-Notation neq := neq.
-Notation Zne := Zne.
-Notation OMEGA2 := Zle_0_plus.
-Notation add_un_Zs := add_un_Zs.
-Notation inj_S := inj_S.
-Notation Zplus_S_n := Zplus_S_n.
-Notation inj_plus := inj_plus.
-Notation inj_mult := inj_mult.
-Notation inj_neq := inj_neq.
-Notation inj_le := inj_le.
-Notation inj_lt := inj_lt.
-Notation inj_gt := inj_gt.
-Notation inj_ge := inj_ge.
-Notation inj_eq := inj_eq.
-Notation intro_Z := intro_Z.
-Notation inj_minus1 := inj_minus1.
-Notation inj_minus2 := inj_minus2.
-Notation dec_eq := dec_eq.
-Notation dec_Zne := dec_Zne.
-Notation dec_Zle := dec_Zle.
-Notation dec_Zgt := dec_Zgt.
-Notation dec_Zge := dec_Zge.
-Notation dec_Zlt := dec_Zlt.
-Notation dec_eq_nat := dec_eq_nat.
-Notation not_Zge := not_Zge.
-Notation not_Zlt := not_Zlt.
-Notation not_Zle := not_Zle.
-Notation not_Zgt := not_Zgt.
-Notation not_Zeq := not_Zeq.
-Notation Zopp_one := Zopp_one.
-Notation Zopp_Zmult_r := Zopp_Zmult_r.
-Notation Zmult_Zopp_left := Zmult_Zopp_left.
-Notation Zopp_Zmult_l := Zopp_Zmult_l.
-Notation Zcompare_Zplus_compatible2 := Zcompare_Zplus_compatible2.
-Notation Zcompare_Zmult_compatible := Zcompare_Zmult_compatible.
-Notation Zmult_eq := Zmult_eq.
-Notation Z_eq_mult := Z_eq_mult.
-Notation Zmult_le := Zmult_le.
-Notation Zle_ZERO_mult := Zle_ZERO_mult.
-Notation Zgt_ZERO_mult := Zgt_ZERO_mult.
-Notation Zle_mult := Zle_mult.
-Notation Zmult_lt := Zmult_lt.
-Notation Zmult_gt := Zmult_gt.
-Notation Zle_Zmult_pos_right := Zle_Zmult_pos_right.
-Notation Zle_Zmult_pos_left := Zle_Zmult_pos_left.
-Notation Zge_Zmult_pos_right := Zge_Zmult_pos_right.
-Notation Zge_Zmult_pos_left := Zge_Zmult_pos_left.
-Notation Zge_Zmult_pos_compat := Zge_Zmult_pos_compat.
-Notation Zle_mult_simpl := Zle_mult_simpl.
-Notation Zge_mult_simpl := Zge_mult_simpl.
-Notation Zgt_mult_simpl := Zgt_mult_simpl.
-Notation Zgt_square_simpl := Zgt_square_simpl.
-].