diff options
Diffstat (limited to 'theories7/ZArith/auxiliary.v')
-rw-r--r-- | theories7/ZArith/auxiliary.v | 219 |
1 files changed, 0 insertions, 219 deletions
diff --git a/theories7/ZArith/auxiliary.v b/theories7/ZArith/auxiliary.v deleted file mode 100644 index 53b9626ce..000000000 --- a/theories7/ZArith/auxiliary.v +++ /dev/null @@ -1,219 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id$ i*) - -(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *) - -Require Export Arith. -Require BinInt. -Require Zorder. -Require Decidable. -Require Peano_dec. -Require Export Compare_dec. - -Open Local Scope Z_scope. - -(**********************************************************************) -(** Moving terms from one side to the other of an inequality *) - -Theorem Zne_left : (x,y:Z) (Zne x y) -> (Zne (Zplus x (Zopp y)) ZERO). -Proof. -Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1; -Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym; -Trivial with arith. -Qed. - -Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO. -Proof. -Intros x y H; -Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute; -Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption. -Qed. - -Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))). -Proof. -Intros x y H; Replace ZERO with (Zplus x (Zopp x)). -Apply Zle_reg_r; Trivial. -Apply Zplus_inverse_r. -Qed. - -Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x))) - -> (Zle x y). -Proof. -Intros x y H; Apply Zsimpl_le_plus_r with (Zopp x). -Rewrite Zplus_inverse_r; Trivial. -Qed. - -Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x))) - -> (Zlt x y). -Proof. -Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x). -Rewrite Zplus_inverse_r; Trivial. -Qed. - -Theorem Zlt_left : - (x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))). -Proof. -Intros x y H; Apply Zle_left; Apply Zle_S_n; -Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S; -Assumption. -Qed. - -Theorem Zlt_left_lt : - (x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))). -Proof. -Intros x y H; Replace ZERO with (Zplus x (Zopp x)). -Apply Zlt_reg_r; Trivial. -Apply Zplus_inverse_r. -Qed. - -Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))). -Proof. -Intros x y H; Apply Zle_left; Apply Zge_le; Assumption. -Qed. - -Theorem Zgt_left : - (x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))). -Proof. -Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption. -Qed. - -Theorem Zgt_left_gt : - (x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO). -Proof. -Intros x y H; Replace ZERO with (Zplus y (Zopp y)). -Apply Zgt_reg_r; Trivial. -Apply Zplus_inverse_r. -Qed. - -Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO) - -> (Zgt x y). -Proof. -Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y). -Rewrite Zplus_inverse_r; Trivial. -Qed. - -(**********************************************************************) -(** Factorization lemmas *) - -Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)). -Intro x; Rewrite (Zmult_n_1 x); Reflexivity. -Qed. - -Theorem Zred_factor1 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))). -Proof. -Exact Zplus_Zmult_2. -Qed. - -Theorem Zred_factor2 : - (x,y:Z) (Zplus x (Zmult x y)) = (Zmult x (Zplus (POS xH) y)). - -Intros x y; Pattern 1 x ; Rewrite <- (Zmult_n_1 x); -Rewrite <- Zmult_plus_distr_r; Trivial with arith. -Qed. - -Theorem Zred_factor3 : - (x,y:Z) (Zplus (Zmult x y) x) = (Zmult x (Zplus (POS xH) y)). - -Intros x y; Pattern 2 x ; Rewrite <- (Zmult_n_1 x); -Rewrite <- Zmult_plus_distr_r; Rewrite Zplus_sym; Trivial with arith. -Qed. -Theorem Zred_factor4 : - (x,y,z:Z) (Zplus (Zmult x y) (Zmult x z)) = (Zmult x (Zplus y z)). -Intros x y z; Symmetry; Apply Zmult_plus_distr_r. -Qed. - -Theorem Zred_factor5 : (x,y:Z) (Zplus (Zmult x ZERO) y) = y. - -Intros x y; Rewrite <- Zmult_n_O;Auto with arith. -Qed. - -Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO). - -Intro; Rewrite Zero_right; Trivial with arith. -Qed. - -Theorem Zle_mult_approx: - (x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) -> - (Zle ZERO (Zplus (Zmult y x) z)). - -Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [ - Apply Zle_mult; Assumption -| Pattern 1 (Zmult y x) ; Rewrite <- Zero_right; Apply Zle_reg_l; - Apply Zlt_le_weak; Apply Zgt_lt; Assumption]. -Qed. - -Theorem Zmult_le_approx: - (x,y,z:Z) (Zgt x ZERO) -> (Zgt x z) -> - (Zle ZERO (Zplus (Zmult y x) z)) -> (Zle ZERO y). - -Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply Zmult_lt with x; [ - Assumption - | Apply Zle_lt_trans with 1:=H3 ; Rewrite <- Zmult_Sm_n; - Apply Zlt_reg_l; Apply Zgt_lt; Assumption]. - -Qed. - -V7only [ -(* Compatibility *) -Require Znat. -Require Zcompare. -Notation neq := neq. -Notation Zne := Zne. -Notation OMEGA2 := Zle_0_plus. -Notation add_un_Zs := add_un_Zs. -Notation inj_S := inj_S. -Notation Zplus_S_n := Zplus_S_n. -Notation inj_plus := inj_plus. -Notation inj_mult := inj_mult. -Notation inj_neq := inj_neq. -Notation inj_le := inj_le. -Notation inj_lt := inj_lt. -Notation inj_gt := inj_gt. -Notation inj_ge := inj_ge. -Notation inj_eq := inj_eq. -Notation intro_Z := intro_Z. -Notation inj_minus1 := inj_minus1. -Notation inj_minus2 := inj_minus2. -Notation dec_eq := dec_eq. -Notation dec_Zne := dec_Zne. -Notation dec_Zle := dec_Zle. -Notation dec_Zgt := dec_Zgt. -Notation dec_Zge := dec_Zge. -Notation dec_Zlt := dec_Zlt. -Notation dec_eq_nat := dec_eq_nat. -Notation not_Zge := not_Zge. -Notation not_Zlt := not_Zlt. -Notation not_Zle := not_Zle. -Notation not_Zgt := not_Zgt. -Notation not_Zeq := not_Zeq. -Notation Zopp_one := Zopp_one. -Notation Zopp_Zmult_r := Zopp_Zmult_r. -Notation Zmult_Zopp_left := Zmult_Zopp_left. -Notation Zopp_Zmult_l := Zopp_Zmult_l. -Notation Zcompare_Zplus_compatible2 := Zcompare_Zplus_compatible2. -Notation Zcompare_Zmult_compatible := Zcompare_Zmult_compatible. -Notation Zmult_eq := Zmult_eq. -Notation Z_eq_mult := Z_eq_mult. -Notation Zmult_le := Zmult_le. -Notation Zle_ZERO_mult := Zle_ZERO_mult. -Notation Zgt_ZERO_mult := Zgt_ZERO_mult. -Notation Zle_mult := Zle_mult. -Notation Zmult_lt := Zmult_lt. -Notation Zmult_gt := Zmult_gt. -Notation Zle_Zmult_pos_right := Zle_Zmult_pos_right. -Notation Zle_Zmult_pos_left := Zle_Zmult_pos_left. -Notation Zge_Zmult_pos_right := Zge_Zmult_pos_right. -Notation Zge_Zmult_pos_left := Zge_Zmult_pos_left. -Notation Zge_Zmult_pos_compat := Zge_Zmult_pos_compat. -Notation Zle_mult_simpl := Zle_mult_simpl. -Notation Zge_mult_simpl := Zge_mult_simpl. -Notation Zgt_mult_simpl := Zgt_mult_simpl. -Notation Zgt_square_simpl := Zgt_square_simpl. -]. |