aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories7/Wellfounded/Union.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Wellfounded/Union.v')
-rw-r--r--theories7/Wellfounded/Union.v74
1 files changed, 0 insertions, 74 deletions
diff --git a/theories7/Wellfounded/Union.v b/theories7/Wellfounded/Union.v
deleted file mode 100644
index 368f65e58..000000000
--- a/theories7/Wellfounded/Union.v
+++ /dev/null
@@ -1,74 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id$ i*)
-
-(** Author: Bruno Barras *)
-
-Require Relation_Operators.
-Require Relation_Definitions.
-Require Transitive_Closure.
-
-Section WfUnion.
- Variable A: Set.
- Variable R1,R2: (relation A).
-
- Notation Union := (union A R1 R2).
-
- Hints Resolve Acc_clos_trans wf_clos_trans.
-
-Remark strip_commut:
- (commut A R1 R2)->(x,y:A)(clos_trans A R1 y x)->(z:A)(R2 z y)
- ->(EX y':A | (R2 y' x) & (clos_trans A R1 z y')).
-Proof.
- NewInduction 2 as [x y|x y z H0 IH1 H1 IH2]; Intros.
- Elim H with y x z ;Auto with sets;Intros x0 H2 H3.
- Exists x0;Auto with sets.
-
- Elim IH1 with z0 ;Auto with sets;Intros.
- Elim IH2 with x0 ;Auto with sets;Intros.
- Exists x1;Auto with sets.
- Apply t_trans with x0; Auto with sets.
-Qed.
-
-
- Lemma Acc_union: (commut A R1 R2)->((x:A)(Acc A R2 x)->(Acc A R1 x))
- ->(a:A)(Acc A R2 a)->(Acc A Union a).
-Proof.
- NewInduction 3 as [x H1 H2].
- Apply Acc_intro;Intros.
- Elim H3;Intros;Auto with sets.
- Cut (clos_trans A R1 y x);Auto with sets.
- ElimType (Acc A (clos_trans A R1) y);Intros.
- Apply Acc_intro;Intros.
- Elim H8;Intros.
- Apply H6;Auto with sets.
- Apply t_trans with x0 ;Auto with sets.
-
- Elim strip_commut with x x0 y0 ;Auto with sets;Intros.
- Apply Acc_inv_trans with x1 ;Auto with sets.
- Unfold union .
- Elim H11;Auto with sets;Intros.
- Apply t_trans with y1 ;Auto with sets.
-
- Apply (Acc_clos_trans A).
- Apply Acc_inv with x ;Auto with sets.
- Apply H0.
- Apply Acc_intro;Auto with sets.
-Qed.
-
-
- Theorem wf_union: (commut A R1 R2)->(well_founded A R1)->(well_founded A R2)
- ->(well_founded A Union).
-Proof.
- Unfold well_founded .
- Intros.
- Apply Acc_union;Auto with sets.
-Qed.
-
-End WfUnion.