diff options
Diffstat (limited to 'theories7/Logic/Hurkens.v')
-rw-r--r-- | theories7/Logic/Hurkens.v | 79 |
1 files changed, 0 insertions, 79 deletions
diff --git a/theories7/Logic/Hurkens.v b/theories7/Logic/Hurkens.v deleted file mode 100644 index 066e51aa5..000000000 --- a/theories7/Logic/Hurkens.v +++ /dev/null @@ -1,79 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* Hurkens.v *) -(************************************************************************) - -(** This is Hurkens paradox [Hurkens] in system U-, adapted by Herman - Geuvers [Geuvers] to show the inconsistency in the pure calculus of - constructions of a retract from Prop into a small type. - - References: - - - [Hurkens] A. J. Hurkens, "A simplification of Girard's paradox", - Proceedings of the 2nd international conference Typed Lambda-Calculi - and Applications (TLCA'95), 1995. - - - [Geuvers] "Inconsistency of Classical Logic in Type Theory", 2001 - (see www.cs.kun.nl/~herman/note.ps.gz). -*) - -Section Paradox. - -Variable bool : Prop. -Variable p2b : Prop -> bool. -Variable b2p : bool -> Prop. -Hypothesis p2p1 : (A:Prop)(b2p (p2b A))->A. -Hypothesis p2p2 : (A:Prop)A->(b2p (p2b A)). -Variable B:Prop. - -Definition V := (A:Prop)((A->bool)->(A->bool))->(A->bool). -Definition U := V->bool. -Definition sb : V -> V := [z][A;r;a](r (z A r) a). -Definition le : (U->bool)->(U->bool) := [i][x](x [A;r;a](i [v](sb v A r a))). -Definition induct : (U->bool)->Prop := [i](x:U)(b2p (le i x))->(b2p (i x)). -Definition WF : U := [z](p2b (induct (z U le))). -Definition I : U->Prop := - [x]((i:U->bool)(b2p (le i x))->(b2p (i [v](sb v U le x))))->B. - -Lemma Omega : (i:U->bool)(induct i)->(b2p (i WF)). -Proof. -Intros i y. -Apply y. -Unfold le WF induct. -Apply p2p2. -Intros x H0. -Apply y. -Exact H0. -Qed. - -Lemma lemma1 : (induct [u](p2b (I u))). -Proof. -Unfold induct. -Intros x p. -Apply (p2p2 (I x)). -Intro q. -Apply (p2p1 (I [v:V](sb v U le x)) (q [u](p2b (I u)) p)). -Intro i. -Apply q with i:=[y:?](i [v:V](sb v U le y)). -Qed. - -Lemma lemma2 : ((i:U->bool)(induct i)->(b2p (i WF)))->B. -Proof. -Intro x. -Apply (p2p1 (I WF) (x [u](p2b (I u)) lemma1)). -Intros i H0. -Apply (x [y](i [v](sb v U le y))). -Apply (p2p1 ? H0). -Qed. - -Theorem paradox : B. -Proof. -Exact (lemma2 Omega). -Qed. - -End Paradox. |