aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith')
-rw-r--r--theories/ZArith/Zpow_facts.v1
1 files changed, 1 insertions, 0 deletions
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
index 9524bd44f..8f86fdf79 100644
--- a/theories/ZArith/Zpow_facts.v
+++ b/theories/ZArith/Zpow_facts.v
@@ -171,6 +171,7 @@ Qed.
Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
Proof.
intros x y; case y; auto with zarith.
+ simpl ; auto with zarith.
intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
generalize H; pattern (Zpos p); apply natlike_ind; auto with zarith.
intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.