aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zpower.v')
-rw-r--r--theories/ZArith/Zpower.v372
1 files changed, 188 insertions, 184 deletions
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v
index ce99427f2..5052d01a0 100644
--- a/theories/ZArith/Zpower.v
+++ b/theories/ZArith/Zpower.v
@@ -6,70 +6,84 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Wf_nat.
-Require Import ZArith_base.
+Require Import Wf_nat ZArith_base Omega Zcomplements.
Require Export Zpow_def.
-Require Import Omega.
-Require Import Zcomplements.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
+
+(** * Power functions over [Z] *)
+
+(** Nota : this file is mostly deprecated. The definition of [Z.pow]
+ and its usual properties are now provided by module [BinInt.Z].
+ Powers of 2 are also available there (see [Z.shiftl] and [Z.shiftr]).
+ Only remain here:
+ - [Zpower_nat] : a power function with a [nat] exponent
+ - old-style powers of two, such as [two_p]
+ - [Zdiv_rest] : a division + modulo when the divisor is a power of 2
+*)
-(** * Definition of powers over [Z]*)
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
-Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
+Definition Zpower_nat (z:Z) (n:nat) := nat_iter n (Z.mul z) 1.
+
+Lemma Zpower_nat_0_r z : Zpower_nat z 0 = 1.
+Proof. reflexivity. Qed.
+
+Lemma Zpower_nat_succ_r n z : Zpower_nat z (S n) = z * (Zpower_nat z n).
+Proof. reflexivity. Qed.
(** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
- [plus : nat->nat] and [Zmult : Z->Z] *)
+ [plus : nat->nat->nat] and [Z.mul : Z->Z->Z] *)
Lemma Zpower_nat_is_exp :
forall (n m:nat) (z:Z),
Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
Proof.
- intros; elim n;
- [ simpl in |- *; elim (Zpower_nat z m); auto with zarith
- | unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
- apply Zmult_assoc ].
+ induction n.
+ - intros. now rewrite Zpower_nat_0_r, Z.mul_1_l.
+ - intros. simpl. now rewrite 2 Zpower_nat_succ_r, IHn, Z.mul_assoc.
+Qed.
+
+(** Conversions between powers of unary and binary integers *)
+
+Lemma Zpower_pos_nat (z : Z) (p : positive) :
+ Z.pow_pos z p = Zpower_nat z (Pos.to_nat p).
+Proof.
+ apply Pos2Nat.inj_iter.
Qed.
-(** This theorem shows that powers of unary and binary integers
- are the same thing, modulo the function convert : [positive -> nat] *)
+Lemma Zpower_nat_Z (z : Z) (n : nat) :
+ Zpower_nat z n = z ^ (Z.of_nat n).
+Proof.
+ induction n. trivial.
+ rewrite Zpower_nat_succ_r, Nat2Z.inj_succ, Z.pow_succ_r.
+ now f_equal.
+ apply Nat2Z.is_nonneg.
+Qed.
-Lemma Zpower_pos_nat :
- forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
+Theorem Zpower_nat_Zpower z n : 0 <= n ->
+ z^n = Zpower_nat z (Z.abs_nat n).
Proof.
- intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
- apply iter_nat_of_P.
+ intros. now rewrite Zpower_nat_Z, Zabs2Nat.id_abs, Z.abs_eq.
Qed.
-(** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
- deduce that the function [(Zpower_pos z)] is a morphism
- for [Pplus : positive->positive] and [Zmult : Z->Z] *)
+(** The function [(Z.pow_pos z)] is a morphism
+ for [Pos.add : positive->positive->positive] and [Z.mul : Z->Z->Z] *)
-Lemma Zpower_pos_is_exp :
- forall (n m:positive) (z:Z),
- Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
+Lemma Zpower_pos_is_exp (n m : positive)(z:Z) :
+ Z.pow_pos z (n + m) = Z.pow_pos z n * Z.pow_pos z m.
Proof.
- intros.
- rewrite (Zpower_pos_nat z n).
- rewrite (Zpower_pos_nat z m).
- rewrite (Zpower_pos_nat z (n + m)).
- rewrite (Pplus_plus n m).
- apply Zpower_nat_is_exp.
+ now apply (Z.pow_add_r z (Zpos n) (Zpos m)).
Qed.
Hint Immediate Zpower_nat_is_exp Zpower_pos_is_exp : zarith.
Hint Unfold Zpower_pos Zpower_nat: zarith.
-Theorem Zpower_exp :
- forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
+Theorem Zpower_exp x n m :
+ n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
Proof.
- destruct n; destruct m; auto with zarith.
- simpl; intros; apply Zred_factor0.
- simpl; auto with zarith.
- intros; compute in H0; elim H0; auto.
- intros; compute in H; elim H; auto.
+ Z.swap_greater. apply Z.pow_add_r.
Qed.
Section Powers_of_2.
@@ -80,129 +94,131 @@ Section Powers_of_2.
calculus is possible. [shift n m] computes [2^n * m], i.e.
[m] shifted by [n] positions *)
- Definition shift_nat (n:nat) (z:positive) := iter_nat n positive xO z.
- Definition shift_pos (n z:positive) := iter_pos n positive xO z.
+ Definition shift_nat (n:nat) (z:positive) := nat_iter n xO z.
+ Definition shift_pos (n z:positive) := Pos.iter n xO z.
Definition shift (n:Z) (z:positive) :=
match n with
| Z0 => z
- | Zpos p => iter_pos p positive xO z
+ | Zpos p => Pos.iter p xO z
| Zneg p => z
end.
Definition two_power_nat (n:nat) := Zpos (shift_nat n 1).
Definition two_power_pos (x:positive) := Zpos (shift_pos x 1).
- Lemma two_power_nat_S :
- forall n:nat, two_power_nat (S n) = 2 * two_power_nat n.
+ Definition two_p (x:Z) :=
+ match x with
+ | Z0 => 1
+ | Zpos y => two_power_pos y
+ | Zneg y => 0
+ end.
+
+ (** Equivalence with notions defined in BinInt *)
+
+ Lemma shift_nat_equiv n p : shift_nat n p = Pos.shiftl_nat p n.
Proof. reflexivity. Qed.
- Lemma shift_nat_plus :
- forall (n m:nat) (x:positive),
- shift_nat (n + m) x = shift_nat n (shift_nat m x).
+ Lemma shift_pos_equiv n p : shift_pos n p = Pos.shiftl p (Npos n).
+ Proof. reflexivity. Qed.
+
+ Lemma shift_equiv n p : 0<=n -> Zpos (shift n p) = Z.shiftl (Zpos p) n.
Proof.
- intros; apply iter_nat_plus.
+ destruct n.
+ - trivial.
+ - simpl; intros. now apply Pos.iter_swap_gen.
+ - now destruct 1.
Qed.
- Theorem shift_nat_correct :
- forall (n:nat) (x:positive), Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
+ Lemma two_power_nat_equiv n : two_power_nat n = 2 ^ (Z.of_nat n).
Proof.
- unfold shift_nat; induction n.
- trivial.
- intros x. simpl.
- change (Zpower_nat 2 (S n)) with (2 * Zpower_nat 2 n).
- now rewrite <- Zmult_assoc, <- IHn.
+ induction n.
+ - trivial.
+ - now rewrite Nat2Z.inj_succ, Z.pow_succ_r, <- IHn by apply Nat2Z.is_nonneg.
Qed.
- Theorem two_power_nat_correct :
- forall n:nat, two_power_nat n = Zpower_nat 2 n.
+ Lemma two_power_pos_equiv p : two_power_pos p = 2 ^ Zpos p.
Proof.
- intro n.
- unfold two_power_nat.
- rewrite (shift_nat_correct n).
- omega.
+ now apply Pos.iter_swap_gen.
Qed.
- (** Second we show that [two_power_pos] and [two_power_nat] are the same *)
- Lemma shift_pos_nat :
- forall p x:positive, shift_pos p x = shift_nat (nat_of_P p) x.
+ Lemma two_p_equiv x : two_p x = 2 ^ x.
Proof.
- unfold shift_pos, shift_nat. intros. apply iter_nat_of_P.
+ destruct x; trivial. apply two_power_pos_equiv.
Qed.
- Lemma two_power_pos_nat :
- forall p:positive, two_power_pos p = two_power_nat (nat_of_P p).
+ (** Properties of these old versions of powers of two *)
+
+ Lemma two_power_nat_S n : two_power_nat (S n) = 2 * two_power_nat n.
+ Proof. reflexivity. Qed.
+
+ Lemma shift_nat_plus n m x :
+ shift_nat (n + m) x = shift_nat n (shift_nat m x).
Proof.
- intro. unfold two_power_pos, two_power_nat.
- f_equal. apply shift_pos_nat.
+ apply iter_nat_plus.
Qed.
- (** Then we deduce that [two_power_pos] is also correct *)
-
- Theorem shift_pos_correct :
- forall p x:positive, Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x.
+ Theorem shift_nat_correct n x :
+ Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
Proof.
- intros.
- rewrite (shift_pos_nat p x).
- rewrite (Zpower_pos_nat 2 p).
- apply shift_nat_correct.
+ induction n.
+ - trivial.
+ - now rewrite Zpower_nat_succ_r, <- Z.mul_assoc, <- IHn.
Qed.
- Theorem two_power_pos_correct :
- forall x:positive, two_power_pos x = Zpower_pos 2 x.
+ Theorem two_power_nat_correct n : two_power_nat n = Zpower_nat 2 n.
Proof.
- intro.
- rewrite two_power_pos_nat.
- rewrite Zpower_pos_nat.
- apply two_power_nat_correct.
+ now rewrite two_power_nat_equiv, Zpower_nat_Z.
Qed.
- (** Some consequences *)
+ Lemma shift_pos_nat p x : shift_pos p x = shift_nat (Pos.to_nat p) x.
+ Proof.
+ apply Pos2Nat.inj_iter.
+ Qed.
- Theorem two_power_pos_is_exp :
- forall x y:positive,
- two_power_pos (x + y) = two_power_pos x * two_power_pos y.
+ Lemma two_power_pos_nat p : two_power_pos p = two_power_nat (Pos.to_nat p).
Proof.
- intros. rewrite 3 two_power_pos_correct. apply Zpower_pos_is_exp.
+ unfold two_power_pos. now rewrite shift_pos_nat.
Qed.
- (** The exponentiation [z -> 2^z] for [z] a signed integer.
- For convenience, we assume that [2^z = 0] for all [z < 0]
- We could also define a inductive type [Log_result] with
- 3 contructors [ Zero | Pos positive -> | minus_infty]
- but it's more complexe and not so useful. *)
+ Theorem shift_pos_correct p x :
+ Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x.
+ Proof.
+ now rewrite shift_pos_nat, Zpower_pos_nat, shift_nat_correct.
+ Qed.
- Definition two_p (x:Z) :=
- match x with
- | Z0 => 1
- | Zpos y => two_power_pos y
- | Zneg y => 0
- end.
+ Theorem two_power_pos_correct x : two_power_pos x = Z.pow_pos 2 x.
+ Proof.
+ apply two_power_pos_equiv.
+ Qed.
- Lemma two_p_correct : forall x, two_p x = 2^x.
+ Theorem two_power_pos_is_exp x y :
+ two_power_pos (x + y) = two_power_pos x * two_power_pos y.
Proof.
- intros [|p|p]; trivial. apply two_power_pos_correct.
+ rewrite 3 two_power_pos_equiv. now apply (Z.pow_add_r 2 (Zpos x) (Zpos y)).
Qed.
- Theorem two_p_is_exp :
- forall x y, 0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
+ Lemma two_p_correct x : two_p x = 2^x.
+ Proof (two_p_equiv x).
+
+ Theorem two_p_is_exp x y :
+ 0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
Proof.
- intros. rewrite 3 two_p_correct. apply Z.pow_add_r; auto with zarith.
+ rewrite !two_p_equiv. apply Z.pow_add_r.
Qed.
- Lemma two_p_gt_ZERO : forall x, 0 <= x -> two_p x > 0.
+ Lemma two_p_gt_ZERO x : 0 <= x -> two_p x > 0.
Proof.
- intros. rewrite two_p_correct. now apply Zlt_gt, Z.pow_pos_nonneg.
+ Z.swap_greater. rewrite two_p_equiv. now apply Z.pow_pos_nonneg.
Qed.
- Lemma two_p_S : forall x, 0 <= x -> two_p (Zsucc x) = 2 * two_p x.
+ Lemma two_p_S x : 0 <= x -> two_p (Z.succ x) = 2 * two_p x.
Proof.
- intros. rewrite 2 two_p_correct. now apply Z.pow_succ_r.
+ rewrite !two_p_equiv. now apply Z.pow_succ_r.
Qed.
- Lemma two_p_pred : forall x, 0 <= x -> two_p (Zpred x) < two_p x.
+ Lemma two_p_pred x : 0 <= x -> two_p (Z.pred x) < two_p x.
Proof.
- intros. rewrite 2 two_p_correct.
- apply Z.pow_lt_mono_r; auto with zarith.
+ rewrite !two_p_equiv. intros. apply Z.pow_lt_mono_r; auto with zarith.
Qed.
End Powers_of_2.
@@ -214,100 +230,88 @@ Section power_div_with_rest.
(** * Division by a power of two. *)
- (** To [n:Z] and [p:positive], [q],[r] are associated such that
- [n = 2^p.q + r] and [0 <= r < 2^p] *)
+ (** To [x:Z] and [p:positive], [q],[r] are associated such that
+ [x = 2^p.q + r] and [0 <= r < 2^p] *)
- (** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<= r < d /\ 0 <= r' < d'] *)
+ (** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<=r<d /\ 0<=r'<d'] *)
Definition Zdiv_rest_aux (qrd:Z * Z * Z) :=
- let (qr, d) := qrd in
- let (q, r) := qr in
- (match q with
- | Z0 => (0, r)
- | Zpos xH => (0, d + r)
- | Zpos (xI n) => (Zpos n, d + r)
- | Zpos (xO n) => (Zpos n, r)
- | Zneg xH => (-1, d + r)
- | Zneg (xI n) => (Zneg n - 1, d + r)
- | Zneg (xO n) => (Zneg n, r)
- end, 2 * d).
+ let '(q,r,d) := qrd in
+ (match q with
+ | Z0 => (0, r)
+ | Zpos xH => (0, d + r)
+ | Zpos (xI n) => (Zpos n, d + r)
+ | Zpos (xO n) => (Zpos n, r)
+ | Zneg xH => (-1, d + r)
+ | Zneg (xI n) => (Zneg n - 1, d + r)
+ | Zneg (xO n) => (Zneg n, r)
+ end, 2 * d).
Definition Zdiv_rest (x:Z) (p:positive) :=
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in qr.
+ let (qr, d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in qr.
- Lemma Zdiv_rest_correct1 :
- forall (x:Z) (p:positive),
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in d = two_power_pos p.
+ Lemma Zdiv_rest_correct1 (x:Z) (p:positive) :
+ let (_, d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in
+ d = two_power_pos p.
Proof.
- intros x p; rewrite (iter_nat_of_P p _ Zdiv_rest_aux (x, 0, 1));
- rewrite (two_power_pos_nat p); elim (nat_of_P p);
- simpl in |- *;
- [ trivial with zarith
- | intro n; rewrite (two_power_nat_S n); unfold Zdiv_rest_aux at 2 in |- *;
- elim (iter_nat n _ Zdiv_rest_aux (x, 0, 1));
- destruct a; intros; apply f_equal with (f := fun z:Z => 2 * z);
- assumption ].
+ rewrite Pos2Nat.inj_iter, two_power_pos_nat.
+ induction (Pos.to_nat p); simpl; trivial.
+ destruct (nat_iter n Zdiv_rest_aux (x,0,1)) as ((q,r),d).
+ unfold Zdiv_rest_aux. rewrite two_power_nat_S; now f_equal.
Qed.
- Lemma Zdiv_rest_correct2 :
- forall (x:Z) (p:positive),
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in
- let (q, r) := qr in x = q * d + r /\ 0 <= r < d.
+ Lemma Zdiv_rest_correct2 (x:Z) (p:positive) :
+ let '(q,r,d) := Pos.iter p Zdiv_rest_aux (x, 0, 1) in
+ x = q * d + r /\ 0 <= r < d.
Proof.
- intros;
- apply iter_pos_invariant with
- (f := Zdiv_rest_aux)
- (Inv := fun qrd:Z * Z * Z =>
- let (qr, d) := qrd in
- let (q, r) := qr in x = q * d + r /\ 0 <= r < d);
- [ intro x0; elim x0; intro y0; elim y0; intros q r d;
- unfold Zdiv_rest_aux in |- *; elim q;
- [ omega
- | destruct p0;
- [ rewrite BinInt.Zpos_xI; intro; elim H; intros; split;
- [ rewrite H0; rewrite Zplus_assoc; rewrite Zmult_plus_distr_l;
- rewrite Zmult_1_l; rewrite Zmult_assoc;
- rewrite (Zmult_comm (Zpos p0) 2); apply refl_equal
- | omega ]
- | rewrite BinInt.Zpos_xO; intro; elim H; intros; split;
- [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zpos p0) 2);
- apply refl_equal
- | omega ]
- | omega ]
- | destruct p0;
- [ rewrite BinInt.Zneg_xI; unfold Zminus in |- *; intro; elim H; intros;
- split;
- [ rewrite H0; rewrite Zplus_assoc;
- apply f_equal with (f := fun z:Z => z + r);
- do 2 rewrite Zmult_plus_distr_l; rewrite Zmult_assoc;
- rewrite (Zmult_comm (Zneg p0) 2); rewrite <- Zplus_assoc;
- apply f_equal with (f := fun z:Z => 2 * Zneg p0 * d + z);
- omega
- | omega ]
- | rewrite BinInt.Zneg_xO; unfold Zminus in |- *; intro; elim H; intros;
- split;
- [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zneg p0) 2);
- apply refl_equal
- | omega ]
- | omega ] ]
- | omega ].
+ apply Pos.iter_invariant; [|omega].
+ intros ((q,r),d) (H,H'). unfold Zdiv_rest_aux.
+ destruct q as [ |[q|q| ]|[q|q| ]]; try omega.
+ - rewrite Z.pos_xI, Z.mul_add_distr_r in H.
+ rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
+ - rewrite Z.pos_xO in H.
+ rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
+ - rewrite Z.neg_xI, Z.mul_sub_distr_r in H.
+ rewrite Z.mul_sub_distr_r, Z.mul_shuffle3, Z.mul_assoc. omega.
+ - rewrite Z.neg_xO in H.
+ rewrite Z.mul_shuffle3, Z.mul_assoc. omega.
Qed.
+ (** Old-style rich specification by proof of existence *)
+
Inductive Zdiv_rest_proofs (x:Z) (p:positive) : Set :=
Zdiv_rest_proof :
forall q r:Z,
x = q * two_power_pos p + r ->
0 <= r -> r < two_power_pos p -> Zdiv_rest_proofs x p.
- Lemma Zdiv_rest_correct : forall (x:Z) (p:positive), Zdiv_rest_proofs x p.
+ Lemma Zdiv_rest_correct (x:Z) (p:positive) : Zdiv_rest_proofs x p.
Proof.
- intros x p.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
- elim (iter_pos p _ Zdiv_rest_aux (x, 0, 1)).
- simple induction a.
- intros.
- elim H; intros H1 H2; clear H.
- rewrite H0 in H1; rewrite H0 in H2; elim H2; intros;
- apply Zdiv_rest_proof with (q := a0) (r := b); assumption.
+ destruct (Pos.iter p Zdiv_rest_aux (x, 0, 1)) as ((q,r),d).
+ intros (H1,(H2,H3)) ->. now exists q r.
+ Qed.
+
+ (** Direct correctness of [Zdiv_rest] *)
+
+ Lemma Zdiv_rest_ok x p :
+ let (q,r) := Zdiv_rest x p in
+ x = q * 2^(Zpos p) + r /\ 0 <= r < 2^(Zpos p).
+ Proof.
+ unfold Zdiv_rest.
+ generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
+ destruct (Pos.iter p Zdiv_rest_aux (x, 0, 1)) as ((q,r),d).
+ intros H ->. now rewrite two_power_pos_equiv in H.
+ Qed.
+
+ (** Equivalence with [Z.shiftr] *)
+
+ Lemma Zdiv_rest_shiftr x p :
+ fst (Zdiv_rest x p) = Z.shiftr x (Zpos p).
+ Proof.
+ generalize (Zdiv_rest_ok x p). destruct (Zdiv_rest x p) as (q,r).
+ intros (H,H'). simpl.
+ rewrite Z.shiftr_div_pow2 by easy.
+ apply Z.div_unique_pos with r; trivial. now rewrite Z.mul_comm.
Qed.
End power_div_with_rest.