aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Znumtheory.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Znumtheory.v')
-rw-r--r--theories/ZArith/Znumtheory.v280
1 files changed, 129 insertions, 151 deletions
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
index 00019b1a3..33f4dc7f4 100644
--- a/theories/ZArith/Znumtheory.v
+++ b/theories/ZArith/Znumtheory.v
@@ -17,7 +17,7 @@ Require Import Wf_nat.
Open Scope Z_scope.
(** This file contains some notions of number theory upon Z numbers:
- - a divisibility predicate [Zdivide]
+ - a divisibility predicate [Z.divide]
- a gcd predicate [gcd]
- Euclid algorithm [euclid]
- a relatively prime predicate [rel_prime]
@@ -35,7 +35,7 @@ Notation Zgcd_greatest := Z.gcd_greatest (compat "8.3").
Notation Zgcd_nonneg := Z.gcd_nonneg (compat "8.3").
Notation Zggcd_opp := Z.ggcd_opp (compat "8.3").
-(** The former specialized inductive predicate [Zdivide] is now
+(** The former specialized inductive predicate [Z.divide] is now
a generic existential predicate. *)
Notation Zdivide := Z.divide (compat "8.3").
@@ -76,11 +76,11 @@ Proof. apply Z.divide_abs_l. Qed.
Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).
Proof. apply Z.divide_abs_l. Qed.
-Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
-Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith.
-Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
- Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r
- Zdivide_factor_r Zdivide_factor_l: zarith.
+Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith.
+Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith.
+Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
+ Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r
+ Z.divide_factor_l Z.divide_factor_r: zarith.
(** Auxiliary result. *)
@@ -108,7 +108,7 @@ Proof.
now apply Z.divide_pos_le.
Qed.
-(** [Zdivide] can be expressed using [Zmod]. *)
+(** [Z.divide] can be expressed using [Z.modulo]. *)
Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).
Proof.
@@ -120,7 +120,7 @@ Proof.
intros a b (c,->); apply Z_mod_mult.
Qed.
-(** [Zdivide] is hence decidable *)
+(** [Z.divide] is hence decidable *)
Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.
Proof.
@@ -193,14 +193,16 @@ Qed.
(** * Greatest common divisor (gcd). *)
-(** There is no unicity of the gcd; hence we define the predicate [gcd a b d]
- expressing that [d] is a gcd of [a] and [b].
- (We show later that the [gcd] is actually unique if we discard its sign.) *)
+(** There is no unicity of the gcd; hence we define the predicate
+ [Zis_gcd a b g] expressing that [g] is a gcd of [a] and [b].
+ (We show later that the [gcd] is actually unique if we discard its sign.) *)
-Inductive Zis_gcd (a b d:Z) : Prop :=
- Zis_gcd_intro :
- (d | a) ->
- (d | b) -> (forall x:Z, (x | a) -> (x | b) -> (x | d)) -> Zis_gcd a b d.
+Inductive Zis_gcd (a b g:Z) : Prop :=
+ Zis_gcd_intro :
+ (g | a) ->
+ (g | b) ->
+ (forall x, (x | a) -> (x | b) -> (x | g)) ->
+ Zis_gcd a b g.
(** Trivial properties of [gcd] *)
@@ -246,12 +248,10 @@ Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
Theorem Zis_gcd_unique: forall a b c d : Z,
Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).
Proof.
-intros a b c d H1 H2.
-inversion_clear H1 as [Hc1 Hc2 Hc3].
-inversion_clear H2 as [Hd1 Hd2 Hd3].
-assert (H3: Zdivide c d); auto.
-assert (H4: Zdivide d c); auto.
-apply Zdivide_antisym; auto.
+intros a b c d [Hc1 Hc2 Hc3] [Hd1 Hd2 Hd3].
+assert (c|d) by auto.
+assert (d|c) by auto.
+apply Z.divide_antisym; auto.
Qed.
@@ -357,7 +357,7 @@ Proof.
intros H1 H2 H3; simple induction 1; intros.
generalize (H3 d' H4 H5); intro Hd'd.
generalize (H6 d H1 H2); intro Hdd'.
- exact (Zdivide_antisym d d' Hdd' Hd'd).
+ exact (Z.divide_antisym d d' Hdd' Hd'd).
Qed.
(** * Bezout's coefficients *)
@@ -450,18 +450,18 @@ Lemma rel_prime_cross_prod :
rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
Proof.
intros a b c d; intros.
- elim (Zdivide_antisym b d).
+ elim (Z.divide_antisym b d).
split; auto with zarith.
rewrite H4 in H3.
- rewrite Zmult_comm in H3.
- apply Zmult_reg_l with d; auto with zarith.
+ rewrite Z.mul_comm in H3.
+ apply Z.mul_reg_l with d; auto with zarith.
intros; omega.
apply Gauss with a.
rewrite H3.
auto with zarith.
red in |- *; auto with zarith.
apply Gauss with c.
- rewrite Zmult_comm.
+ rewrite Z.mul_comm.
rewrite <- H3.
auto with zarith.
red in |- *; auto with zarith.
@@ -492,12 +492,12 @@ Proof.
exists b'; auto with zarith.
intros x (xa,H5) (xb,H6).
destruct (H4 (x*g)) as (x',Hx').
- exists xa; rewrite Zmult_assoc; rewrite <- H5; auto.
- exists xb; rewrite Zmult_assoc; rewrite <- H6; auto.
+ exists xa; rewrite Z.mul_assoc; rewrite <- H5; auto.
+ exists xb; rewrite Z.mul_assoc; rewrite <- H6; auto.
replace g with (1*g) in Hx'; auto with zarith.
- do 2 rewrite Zmult_assoc in Hx'.
- apply Zmult_reg_r in Hx'; trivial.
- rewrite Zmult_1_r in Hx'.
+ do 2 rewrite Z.mul_assoc in Hx'.
+ apply Z.mul_reg_r in Hx'; trivial.
+ rewrite Z.mul_1_r in Hx'.
exists x'; auto with zarith.
Qed.
@@ -512,9 +512,9 @@ Theorem rel_prime_div: forall p q r,
Proof.
intros p q r H (u, H1); subst.
inversion_clear H as [H1 H2 H3].
- red; apply Zis_gcd_intro; try apply Zone_divide.
+ red; apply Zis_gcd_intro; try apply Z.divide_1_l.
intros x H4 H5; apply H3; auto.
- apply Zdivide_mult_r; auto.
+ apply Z.divide_mul_r; auto.
Qed.
Theorem rel_prime_1: forall n, rel_prime 1 n.
@@ -578,10 +578,10 @@ Proof.
destruct 1; intros.
assert
(a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p).
- { assert (Zabs a <= Zabs p) as H2.
+ { assert (Z.abs a <= Z.abs p) as H2.
apply Zdivide_bounds; [ assumption | omega ].
revert H2.
- pattern (Zabs a); apply Zabs_ind; pattern (Zabs p); apply Zabs_ind;
+ pattern (Z.abs a); apply Zabs_ind; pattern (Z.abs p); apply Zabs_ind;
intros; omega. }
intuition idtac.
(* -p < a < -1 *)
@@ -589,7 +589,7 @@ Proof.
inversion H2.
assert (- a | - a) by auto with zarith.
assert (- a | p) by auto with zarith.
- apply H7, Zdivide_1 in H8; intuition.
+ apply H7, Z.divide_1_r in H8; intuition.
(* a = 0 *)
- inversion H1. subst a; omega.
(* 1 < a < p *)
@@ -597,7 +597,7 @@ Proof.
inversion H2.
assert (a | a) by auto with zarith.
assert (a | p) by auto with zarith.
- apply H7, Zdivide_1 in H8; intuition.
+ apply H7, Z.divide_1_r in H8; intuition.
Qed.
(** A prime number is relatively prime with any number it does not divide *)
@@ -621,7 +621,7 @@ Proof.
intros a p Hp [H1 H2].
apply rel_prime_sym; apply prime_rel_prime; auto.
intros [q Hq]; subst a.
- case (Zle_or_lt q 0); intros Hl.
+ case (Z.le_gt_cases q 0); intros Hl.
absurd (q * p <= 0 * p); auto with zarith.
absurd (1 * p <= q * p); auto with zarith.
Qed.
@@ -651,87 +651,79 @@ Qed.
Lemma prime_2: prime 2.
Proof.
apply prime_intro; auto with zarith.
- intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
- clear H1; intros H1.
- contradict H2; auto with zarith.
- subst n; red; auto with zarith.
- apply Zis_gcd_intro; auto with zarith.
+ intros n (H,H'); Z.le_elim H; auto with zarith.
+ - contradict H'; auto with zarith.
+ - subst n. constructor; auto with zarith.
Qed.
Theorem prime_3: prime 3.
Proof.
apply prime_intro; auto with zarith.
- intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
- clear H1; intros H1.
- case (Zle_lt_or_eq 2 n); auto with zarith; clear H1; intros H1.
- contradict H2; auto with zarith.
- subst n; red; auto with zarith.
- apply Zis_gcd_intro; auto with zarith.
- intros x [q1 Hq1] [q2 Hq2].
- exists (q2 - q1).
- apply trans_equal with (3 - 2); auto with zarith.
- rewrite Hq1; rewrite Hq2; ring.
- subst n; red; auto with zarith.
- apply Zis_gcd_intro; auto with zarith.
+ intros n (H,H'); Z.le_elim H; auto with zarith.
+ - replace n with 2 by omega.
+ constructor; auto with zarith.
+ intros x (q,Hq) (q',Hq').
+ exists (q' - q). ring_simplify. now rewrite <- Hq, <- Hq'.
+ - replace n with 1 by trivial.
+ constructor; auto with zarith.
Qed.
-Theorem prime_ge_2: forall p, prime p -> 2 <= p.
+Theorem prime_ge_2 p : prime p -> 2 <= p.
Proof.
- intros p Hp; inversion Hp; auto with zarith.
+ intros (Hp,_); auto with zarith.
Qed.
Definition prime' p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).
-Theorem prime_alt:
- forall p, prime' p <-> prime p.
-Proof.
- split; destruct 1; intros.
- (* prime -> prime' *)
- constructor; auto; intros.
- red; apply Zis_gcd_intro; auto with zarith; intros.
- case (Zle_lt_or_eq 0 (Zabs x)); auto with zarith; intros H6.
- case (Zle_lt_or_eq 1 (Zabs x)); auto with zarith; intros H7.
- case (Zle_lt_or_eq (Zabs x) p); auto with zarith.
- apply Zdivide_le; auto with zarith.
- apply Zdivide_Zabs_inv_l; auto.
- intros H8; case (H0 (Zabs x)); auto.
- apply Zdivide_Zabs_inv_l; auto.
- intros H8; subst p; absurd (Zabs x <= n); auto with zarith.
- apply Zdivide_le; auto with zarith.
- apply Zdivide_Zabs_inv_l; auto.
- rewrite H7; pattern (Zabs x); apply Zabs_intro; auto with zarith.
- absurd (0%Z = p); auto with zarith.
- assert (x=0) by (destruct x; simpl in *; now auto).
- subst x; elim H3; intro q; rewrite Zmult_0_r; auto.
- (* prime' -> prime *)
- split; auto; intros.
- intros H2.
- case (Zis_gcd_unique n p n 1); auto with zarith.
- apply Zis_gcd_intro; auto with zarith.
- apply H0; auto with zarith.
+Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1<x.
+Proof.
+ intros H. Z.le_elim H; auto.
+ apply Z.le_succ_l in H. change (1 <= x) in H. Z.le_elim H; auto.
+Qed.
+
+Theorem prime_alt p : prime' p <-> prime p.
+Proof.
+ split; intros (Hp,H).
+ - (* prime -> prime' *)
+ constructor; trivial; intros n Hn.
+ constructor; auto with zarith; intros x Hxn Hxp.
+ rewrite <- Z.divide_abs_l in Hxn, Hxp |- *.
+ assert (Hx := Z.abs_nonneg x).
+ set (y:=Z.abs x) in *; clearbody y; clear x; rename y into x.
+ destruct (Z_0_1_more x Hx) as [->|[->|Hx']].
+ + exfalso. apply Z.divide_0_l in Hxn. omega.
+ + now exists 1.
+ + elim (H x); auto.
+ split; trivial.
+ apply Z.le_lt_trans with n; auto with zarith.
+ apply Z.divide_pos_le; auto with zarith.
+ - (* prime' -> prime *)
+ constructor; trivial. intros n Hn Hnp.
+ case (Zis_gcd_unique n p n 1); auto with zarith.
+ constructor; auto with zarith.
+ apply H; auto with zarith.
Qed.
Theorem square_not_prime: forall a, ~ prime (a * a).
Proof.
intros a Ha.
- rewrite <- (Zabs_square a) in Ha.
- assert (0 <= Zabs a) by auto with zarith.
- set (b:=Zabs a) in *; clearbody b.
- rewrite <- prime_alt in Ha; destruct Ha.
- case (Zle_lt_or_eq 0 b); auto with zarith; intros Hza1; [ | subst; omega].
- case (Zle_lt_or_eq 1 b); auto with zarith; intros Hza2; [ | subst; omega].
- assert (Hza3 := Zmult_lt_compat_r 1 b b Hza1 Hza2).
- rewrite Zmult_1_l in Hza3.
- elim (H1 _ (conj Hza2 Hza3)).
- exists b; auto.
+ rewrite <- (Z.abs_square a) in Ha.
+ assert (H:=Z.abs_nonneg a).
+ set (b:=Z.abs a) in *; clearbody b; clear a; rename b into a.
+ rewrite <- prime_alt in Ha; destruct Ha as (Ha,Ha').
+ assert (H' : 1 < a) by now apply (Z.square_lt_simpl_nonneg 1).
+ apply (Ha' a).
+ + split; trivial.
+ rewrite <- (Z.mul_1_l a) at 1. apply Z.mul_lt_mono_pos_r; omega.
+ + exists a; auto.
Qed.
Theorem prime_div_prime: forall p q,
prime p -> prime q -> (p | q) -> p = q.
Proof.
intros p q H H1 H2;
- assert (Hp: 0 < p); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
- assert (Hq: 0 < q); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
+ assert (Hp: 0 < p); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith.
+ assert (Hq: 0 < q); try apply Z.lt_le_trans with 2; try apply prime_ge_2; auto with zarith.
case prime_divisors with (2 := H2); auto.
intros H4; contradict Hp; subst; auto with zarith.
intros [H4| [H4 | H4]]; subst; auto.
@@ -768,11 +760,11 @@ Theorem Zis_gcd_gcd: forall a b c : Z,
0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.
Proof.
intros a b c H1 H2.
- case (Zis_gcd_uniqueness_apart_sign a b c (Zgcd a b)); auto.
+ case (Zis_gcd_uniqueness_apart_sign a b c (Z.gcd a b)); auto.
apply Zgcd_is_gcd; auto.
Z.le_elim H1.
- generalize (Z.gcd_nonneg a b); auto with zarith.
- subst. now case (Z.gcd a b).
+ - generalize (Z.gcd_nonneg a b); auto with zarith.
+ - subst. now case (Z.gcd a b).
Qed.
Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3").
@@ -786,8 +778,8 @@ Proof.
intros a b Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto.
- repeat rewrite Zmult_assoc; f_equal.
- rewrite Zmult_comm.
+ repeat rewrite Z.mul_assoc; f_equal.
+ rewrite Z.mul_comm.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
@@ -798,17 +790,17 @@ Theorem Zgcd_div_swap : forall a b c : Z,
Proof.
intros a b c Hg Hb.
assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
- pattern b at 2; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
- repeat rewrite Zmult_assoc; f_equal.
+ pattern b at 2; rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b); auto.
+ repeat rewrite Z.mul_assoc; f_equal.
rewrite Zdivide_Zdiv_eq_2; auto.
- repeat rewrite <- Zmult_assoc; f_equal.
- rewrite Zmult_comm.
+ repeat rewrite <- Z.mul_assoc; f_equal.
+ rewrite Z.mul_comm.
rewrite <- Zdivide_Zdiv_eq; auto.
Qed.
Notation Zgcd_comm := Z.gcd_comm (compat "8.3").
-Lemma Zgcd_ass a b c : Zgcd (Zgcd a b) c = Zgcd a (Zgcd b c).
+Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c).
Proof.
symmetry. apply Z.gcd_assoc.
Qed.
@@ -817,23 +809,23 @@ Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3").
Notation Zgcd_0 := Z.gcd_0_r (compat "8.3").
Notation Zgcd_1 := Z.gcd_1_r (compat "8.3").
-Hint Resolve Zgcd_0 Zgcd_1 : zarith.
+Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith.
Theorem Zgcd_1_rel_prime : forall a b,
Z.gcd a b = 1 <-> rel_prime a b.
Proof.
unfold rel_prime; split; intro H.
rewrite <- H; apply Zgcd_is_gcd.
- case (Zis_gcd_unique a b (Zgcd a b) 1); auto.
+ case (Zis_gcd_unique a b (Z.gcd a b) 1); auto.
apply Zgcd_is_gcd.
- intros H2; absurd (0 <= Zgcd a b); auto with zarith.
- generalize (Zgcd_is_pos a b); auto with zarith.
+ intros H2; absurd (0 <= Z.gcd a b); auto with zarith.
+ generalize (Z.gcd_nonneg a b); auto with zarith.
Qed.
Definition rel_prime_dec: forall a b,
{ rel_prime a b }+{ ~ rel_prime a b }.
Proof.
- intros a b; case (Z_eq_dec (Zgcd a b) 1); intros H1.
+ intros a b; case (Z.eq_dec (Z.gcd a b) 1); intros H1.
left; apply -> Zgcd_1_rel_prime; auto.
right; contradict H1; apply <- Zgcd_1_rel_prime; auto.
Defined.
@@ -851,25 +843,24 @@ Proof.
intros x Hx IH; destruct IH as [F|E].
destruct (rel_prime_dec x p) as [Y|N].
left; intros n [HH1 HH2].
- case (Zgt_succ_gt_or_eq x n); auto with zarith.
- intros HH3; subst x; auto.
- case (Z_lt_dec 1 x); intros HH1.
- right; exists x; split; auto with zarith.
- left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith.
- right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith.
+ rewrite Z.lt_succ_r in HH2.
+ Z.le_elim HH2; subst; auto with zarith.
+ - case (Z_lt_dec 1 x); intros HH1.
+ * right; exists x; split; auto with zarith.
+ * left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith.
+ - right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith.
Defined.
Definition prime_dec: forall p, { prime p }+{ ~ prime p }.
Proof.
intros p; case (Z_lt_dec 1 p); intros H1.
- case (prime_dec_aux p p); intros H2.
- left; apply prime_intro; auto.
- intros n [Hn1 Hn2]; case Zle_lt_or_eq with ( 1 := Hn1 ); auto.
- intros HH; subst n.
- red; apply Zis_gcd_intro; auto with zarith.
- right; intros H3; inversion_clear H3 as [Hp1 Hp2].
- case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith.
- right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto.
+ + case (prime_dec_aux p p); intros H2.
+ * left; apply prime_intro; auto.
+ intros n (Hn1,Hn2). Z.le_elim Hn1; auto; subst n.
+ constructor; auto with zarith.
+ * right; intros H3; inversion_clear H3 as [Hp1 Hp2].
+ case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith.
+ + right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto.
Defined.
Theorem not_prime_divide:
@@ -877,29 +868,16 @@ Theorem not_prime_divide:
Proof.
intros p Hp Hp1.
case (prime_dec_aux p p); intros H1.
- elim Hp1; constructor; auto.
- intros n [Hn1 Hn2].
- case Zle_lt_or_eq with ( 1 := Hn1 ); auto with zarith.
- intros H2; subst n; red; apply Zis_gcd_intro; auto with zarith.
- case H1; intros n [Hn1 Hn2].
- generalize (Zgcd_is_pos n p); intros Hpos.
- case (Zle_lt_or_eq 0 (Zgcd n p)); auto with zarith; intros H3.
- case (Zle_lt_or_eq 1 (Zgcd n p)); auto with zarith; intros H4.
- exists (Zgcd n p); split; auto.
- split; auto.
- apply Zle_lt_trans with n; auto with zarith.
- generalize (Zgcd_is_gcd n p); intros tmp; inversion_clear tmp as [Hr1 Hr2 Hr3].
- case Hr1; intros q Hq.
- case (Zle_or_lt q 0); auto with zarith; intros Ht.
- absurd (n <= 0 * Zgcd n p) ; auto with zarith.
- pattern n at 1; rewrite Hq; auto with zarith.
- apply Zle_trans with (1 * Zgcd n p); auto with zarith.
- pattern n at 2; rewrite Hq; auto with zarith.
- generalize (Zgcd_is_gcd n p); intros Ht; inversion Ht; auto.
- case Hn2; red.
- rewrite H4; apply Zgcd_is_gcd.
- generalize (Zgcd_is_gcd n p); rewrite <- H3; intros tmp;
- inversion_clear tmp as [Hr1 Hr2 Hr3].
- absurd (n = 0); auto with zarith.
- case Hr1; auto with zarith.
+ - elim Hp1; constructor; auto.
+ intros n (Hn1,Hn2).
+ Z.le_elim Hn1; auto with zarith.
+ subst n; constructor; auto with zarith.
+ - case H1; intros n (Hn1,Hn2).
+ destruct (Z_0_1_more _ (Z.gcd_nonneg n p)) as [H|[H|H]].
+ + exfalso. apply Z.gcd_eq_0_l in H. omega.
+ + elim Hn2. red. rewrite <- H. apply Zgcd_is_gcd.
+ + exists (Z.gcd n p); split; [ split; auto | apply Z.gcd_divide_r ].
+ apply Z.le_lt_trans with n; auto with zarith.
+ apply Z.divide_pos_le; auto with zarith.
+ apply Z.gcd_divide_l.
Qed.