aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/ZArith/Zlogarithm.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zlogarithm.v')
-rw-r--r--theories/ZArith/Zlogarithm.v42
1 files changed, 21 insertions, 21 deletions
diff --git a/theories/ZArith/Zlogarithm.v b/theories/ZArith/Zlogarithm.v
index 3711ea021..09323ebd4 100644
--- a/theories/ZArith/Zlogarithm.v
+++ b/theories/ZArith/Zlogarithm.v
@@ -77,7 +77,7 @@ Section Log_pos. (* Log of positive integers *)
forall x:positive,
0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Z.succ (log_inf x)).
Proof.
- simple induction x; intros; simpl in |- *;
+ simple induction x; intros; simpl;
[ elim H; intros Hp HR; clear H; split;
[ auto with zarith
| rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial);
@@ -90,7 +90,7 @@ Section Log_pos. (* Log of positive integers *)
rewrite two_p_S by trivial;
rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p);
omega ]
- | unfold two_power_pos in |- *; unfold shift_pos in |- *; simpl in |- *;
+ | unfold two_power_pos; unfold shift_pos; simpl;
omega ].
Qed.
@@ -103,7 +103,7 @@ Section Log_pos. (* Log of positive integers *)
Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p.
Proof.
- simple induction p; intros; simpl in |- *; auto with zarith.
+ simple induction p; intros; simpl; auto with zarith.
Qed.
(** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)]
@@ -115,16 +115,16 @@ Section Log_pos. (* Log of positive integers *)
else log_sup p = Z.succ (log_inf p).
Proof.
simple induction p; intros;
- [ elim H; right; simpl in |- *;
+ [ elim H; right; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega
| elim H; clear H; intro Hif;
- [ left; simpl in |- *;
+ [ left; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
rewrite <- (proj1 Hif); rewrite <- (proj2 Hif);
auto
- | right; simpl in |- *;
+ | right; simpl;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ;
omega ]
@@ -146,12 +146,12 @@ Section Log_pos. (* Log of positive integers *)
Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p.
Proof.
- simple induction p; simpl in |- *; intros; omega.
+ simple induction p; simpl; intros; omega.
Qed.
Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Z.succ (log_inf p).
Proof.
- simple induction p; simpl in |- *; intros; omega.
+ simple induction p; simpl; intros; omega.
Qed.
(** Now it's possible to specify and build the [Log] rounded to the nearest *)
@@ -167,7 +167,7 @@ Section Log_pos. (* Log of positive integers *)
Theorem log_near_correct1 : forall p:positive, 0 <= log_near p.
Proof.
- simple induction p; simpl in |- *; intros;
+ simple induction p; simpl; intros;
[ elim p0; auto with zarith
| elim p0; auto with zarith
| trivial with zarith ].
@@ -182,9 +182,9 @@ Section Log_pos. (* Log of positive integers *)
Proof.
simple induction p.
intros p0 [Einf| Esup].
- simpl in |- *. rewrite Einf.
+ simpl. rewrite Einf.
case p0; [ left | left | right ]; reflexivity.
- simpl in |- *; rewrite Esup.
+ simpl; rewrite Esup.
elim (log_sup_log_inf p0).
generalize (log_inf_le_log_sup p0).
generalize (log_sup_le_Slog_inf p0).
@@ -192,10 +192,10 @@ Section Log_pos. (* Log of positive integers *)
intros; omega.
case p0; intros; auto with zarith.
intros p0 [Einf| Esup].
- simpl in |- *.
+ simpl.
repeat rewrite Einf.
case p0; intros; auto with zarith.
- simpl in |- *.
+ simpl.
repeat rewrite Esup.
case p0; intros; auto with zarith.
auto.
@@ -216,7 +216,7 @@ Section divers.
Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x.
Proof.
- simple induction x; simpl in |- *;
+ simple induction x; simpl;
[ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ].
Qed.
@@ -245,21 +245,21 @@ Section divers.
Proof.
split;
[ elim p;
- [ simpl in |- *; tauto
- | simpl in |- *; intros; generalize (H H0); intro H1; elim H1;
+ [ simpl; tauto
+ | simpl; intros; generalize (H H0); intro H1; elim H1;
intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity
| intro; exists 0%nat; reflexivity ]
- | intros; elim H; intros; rewrite H0; elim x; intros; simpl in |- *; trivial ].
+ | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ].
Qed.
Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p.
Proof.
simple induction p;
- [ intros; right; simpl in |- *; tauto
+ [ intros; right; simpl; tauto
| intros; elim H;
- [ intros; left; simpl in |- *; exact H0
- | intros; right; simpl in |- *; exact H0 ]
- | left; simpl in |- *; trivial ].
+ [ intros; left; simpl; exact H0
+ | intros; right; simpl; exact H0 ]
+ | left; simpl; trivial ].
Qed.
End divers.