aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Wellfounded/Lexicographic_Exponentiation.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Wellfounded/Lexicographic_Exponentiation.v')
-rw-r--r--theories/Wellfounded/Lexicographic_Exponentiation.v616
1 files changed, 302 insertions, 314 deletions
diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v
index 8efa124c3..e8203c399 100644
--- a/theories/Wellfounded/Lexicographic_Exponentiation.v
+++ b/theories/Wellfounded/Lexicographic_Exponentiation.v
@@ -13,15 +13,14 @@
From : Constructing Recursion Operators in Type Theory
L. Paulson JSC (1986) 2, 325-355 *)
-Require Eqdep.
-Require PolyList.
-Require PolyListSyntax.
-Require Relation_Operators.
-Require Transitive_Closure.
+Require Import Eqdep.
+Require Import List.
+Require Import Relation_Operators.
+Require Import Transitive_Closure.
Section Wf_Lexicographic_Exponentiation.
-Variable A:Set.
-Variable leA: A->A->Prop.
+Variable A : Set.
+Variable leA : A -> A -> Prop.
Notation Power := (Pow A leA).
Notation Lex_Exp := (lex_exp A leA).
@@ -29,358 +28,347 @@ Notation ltl := (Ltl A leA).
Notation Descl := (Desc A leA).
Notation List := (list A).
-Notation Nil := (nil A).
+Notation Nil := (nil (A:=A)).
(* useless but symmetric *)
-Notation Cons := (cons 1!A).
-Notation "<< x , y >>" := (exist List Descl x y) (at level 0)
- V8only (at level 0, x,y at level 100).
-
-V7only[
-Syntax constr
- level 1:
- List [ (list A) ] -> ["List"]
- | Nil [ (nil A) ] -> ["Nil"]
- | Cons [ (cons A) ] -> ["Cons"]
- ;
- level 10:
- Cons2 [ (cons A $e $l) ] -> ["Cons " $e:L " " $l:L ].
-
-Syntax constr
- level 1:
- pair_sig [ (exist (list A) Desc $e $d) ] -> ["<<" $e:L "," $d:L ">>"].
-].
-Hints Resolve d_one d_nil t_step.
-
-Lemma left_prefix : (x,y,z:List)(ltl x^y z)-> (ltl x z).
+Notation Cons := (cons (A:=A)).
+Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100).
+
+Hint Resolve d_one d_nil t_step.
+
+Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z.
Proof.
- Induction x.
- Induction z.
- Simpl;Intros H.
- Inversion_clear H.
- Simpl;Intros;Apply (Lt_nil A leA).
- Intros a l HInd.
- Simpl.
- Intros.
- Inversion_clear H.
- Apply (Lt_hd A leA);Auto with sets.
- Apply (Lt_tl A leA).
- Apply (HInd y y0);Auto with sets.
+ simple induction x.
+ simple induction z.
+ simpl in |- *; intros H.
+ inversion_clear H.
+ simpl in |- *; intros; apply (Lt_nil A leA).
+ intros a l HInd.
+ simpl in |- *.
+ intros.
+ inversion_clear H.
+ apply (Lt_hd A leA); auto with sets.
+ apply (Lt_tl A leA).
+ apply (HInd y y0); auto with sets.
Qed.
-Lemma right_prefix :
- (x,y,z:List)(ltl x y^z)-> (ltl x y) \/ (EX y':List | x=(y^y') /\ (ltl y' z)).
+Lemma right_prefix :
+ forall x y z:List,
+ ltl x (y ++ z) -> ltl x y \/ ( exists y' : List | x = y ++ y' /\ ltl y' z).
Proof.
- Intros x y;Generalize x.
- Elim y;Simpl.
- Right.
- Exists x0 ;Auto with sets.
- Intros.
- Inversion H0.
- Left;Apply (Lt_nil A leA).
- Left;Apply (Lt_hd A leA);Auto with sets.
- Generalize (H x1 z H3) .
- Induction 1.
- Left;Apply (Lt_tl A leA);Auto with sets.
- Induction 1.
- Induction 1;Intros.
- Rewrite -> H8.
- Right;Exists x2 ;Auto with sets.
+ intros x y; generalize x.
+ elim y; simpl in |- *.
+ right.
+ exists x0; auto with sets.
+ intros.
+ inversion H0.
+ left; apply (Lt_nil A leA).
+ left; apply (Lt_hd A leA); auto with sets.
+ generalize (H x1 z H3).
+ simple induction 1.
+ left; apply (Lt_tl A leA); auto with sets.
+ simple induction 1.
+ simple induction 1; intros.
+ rewrite H8.
+ right; exists x2; auto with sets.
Qed.
-Lemma desc_prefix: (x:List)(a:A)(Descl x^(Cons a Nil))->(Descl x).
+Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x.
Proof.
- Intros.
- Inversion H.
- Generalize (app_cons_not_nil H1); Induction 1.
- Cut (x^(Cons a Nil))=(Cons x0 Nil); Auto with sets.
- Intro.
- Generalize (app_eq_unit H0) .
- Induction 1; Induction 1; Intros.
- Rewrite -> H4; Auto with sets.
- Discriminate H5.
- Generalize (app_inj_tail H0) .
- Induction 1; Intros.
- Rewrite <- H4; Auto with sets.
+ intros.
+ inversion H.
+ generalize (app_cons_not_nil _ _ _ H1); simple induction 1.
+ cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets.
+ intro.
+ generalize (app_eq_unit _ _ H0).
+ simple induction 1; simple induction 1; intros.
+ rewrite H4; auto with sets.
+ discriminate H5.
+ generalize (app_inj_tail _ _ _ _ H0).
+ simple induction 1; intros.
+ rewrite <- H4; auto with sets.
Qed.
-Lemma desc_tail: (x:List)(a,b:A)
- (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b).
+Lemma desc_tail :
+ forall (x:List) (a b:A),
+ Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b.
Proof.
- Intro.
- Apply rev_ind with A:=A
- P:=[x:List](a,b:A)
- (Descl (Cons b (x^(Cons a Nil))))-> (clos_trans A leA a b).
- Intros.
-
- Inversion H.
- Cut (Cons b (Cons a Nil))= ((Nil^(Cons b Nil))^ (Cons a Nil)); Auto with sets; Intro.
- Generalize H0.
- Intro.
- Generalize (app_inj_tail 2!(l^(Cons y Nil)) 3!(Nil^(Cons b Nil)) H4);
- Induction 1.
- Intros.
-
- Generalize (app_inj_tail H6); Induction 1; Intros.
- Generalize H1.
- Rewrite <- H10; Rewrite <- H7; Intro.
- Apply (t_step A leA); Auto with sets.
-
-
-
- Intros.
- Inversion H0.
- Generalize (app_cons_not_nil H3); Intro.
- Elim H1.
-
- Generalize H0.
- Generalize (app_comm_cons (l^(Cons x0 Nil)) (Cons a Nil) b); Induction 1.
- Intro.
- Generalize (desc_prefix (Cons b (l^(Cons x0 Nil))) a H5); Intro.
- Generalize (H x0 b H6).
- Intro.
- Apply t_trans with A:=A y:=x0; Auto with sets.
-
- Apply t_step.
- Generalize H1.
- Rewrite -> H4; Intro.
-
- Generalize (app_inj_tail H8); Induction 1.
- Intros.
- Generalize H2; Generalize (app_comm_cons l (Cons x0 Nil) b).
- Intro.
- Generalize H10.
- Rewrite ->H12; Intro.
- Generalize (app_inj_tail H13); Induction 1.
- Intros.
- Rewrite <- H11; Rewrite <- H16; Auto with sets.
+ intro.
+ apply rev_ind with
+ (A := A)
+ (P := fun x:List =>
+ forall a b:A,
+ Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b).
+ intros.
+
+ inversion H.
+ cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil);
+ auto with sets; intro.
+ generalize H0.
+ intro.
+ generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4);
+ simple induction 1.
+ intros.
+
+ generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
+ generalize H1.
+ rewrite <- H10; rewrite <- H7; intro.
+ apply (t_step A leA); auto with sets.
+
+
+
+ intros.
+ inversion H0.
+ generalize (app_cons_not_nil _ _ _ H3); intro.
+ elim H1.
+
+ generalize H0.
+ generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b);
+ simple induction 1.
+ intro.
+ generalize (desc_prefix (Cons b (l ++ Cons x0 Nil)) a H5); intro.
+ generalize (H x0 b H6).
+ intro.
+ apply t_trans with (A := A) (y := x0); auto with sets.
+
+ apply t_step.
+ generalize H1.
+ rewrite H4; intro.
+
+ generalize (app_inj_tail _ _ _ _ H8); simple induction 1.
+ intros.
+ generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b).
+ intro.
+ generalize H10.
+ rewrite H12; intro.
+ generalize (app_inj_tail _ _ _ _ H13); simple induction 1.
+ intros.
+ rewrite <- H11; rewrite <- H16; auto with sets.
Qed.
-Lemma dist_aux : (z:List)(Descl z)->(x,y:List)z=(x^y)->(Descl x)/\ (Descl y).
+Lemma dist_aux :
+ forall z:List, Descl z -> forall x y:List, z = x ++ y -> Descl x /\ Descl y.
Proof.
- Intros z D.
- Elim D.
- Intros.
- Cut (x^y)=Nil;Auto with sets; Intro.
- Generalize (app_eq_nil H0) ; Induction 1.
- Intros.
- Rewrite -> H2;Rewrite -> H3; Split;Apply d_nil.
-
- Intros.
- Cut (x0^y)=(Cons x Nil); Auto with sets.
- Intros E.
- Generalize (app_eq_unit E); Induction 1.
- Induction 1;Intros.
- Rewrite -> H2;Rewrite -> H3; Split.
- Apply d_nil.
-
- Apply d_one.
-
- Induction 1; Intros.
- Rewrite -> H2;Rewrite -> H3; Split.
- Apply d_one.
-
- Apply d_nil.
-
- Do 5 Intro.
- Intros Hind.
- Do 2 Intro.
- Generalize x0 .
- Apply rev_ind with A:=A
- P:=[y0:List]
- (x0:List)
- ((l^(Cons y Nil))^(Cons x Nil))=(x0^y0)->(Descl x0)/\(Descl y0).
-
- Intro.
- Generalize (app_nil_end x1) ; Induction 1; Induction 1.
- Split. Apply d_conc; Auto with sets.
-
- Apply d_nil.
-
- Do 3 Intro.
- Generalize x1 .
- Apply rev_ind with
- A:=A
- P:=[l0:List]
- (x1:A)
- (x0:List)
- ((l^(Cons y Nil))^(Cons x Nil))=(x0^(l0^(Cons x1 Nil)))
- ->(Descl x0)/\(Descl (l0^(Cons x1 Nil))).
-
-
- Simpl.
- Split.
- Generalize (app_inj_tail H2) ;Induction 1.
- Induction 1;Auto with sets.
-
- Apply d_one.
- Do 5 Intro.
- Generalize (app_ass x4 (l1^(Cons x2 Nil)) (Cons x3 Nil)) .
- Induction 1.
- Generalize (app_ass x4 l1 (Cons x2 Nil)) ;Induction 1.
- Intro E.
- Generalize (app_inj_tail E) .
- Induction 1;Intros.
- Generalize (app_inj_tail H6) ;Induction 1;Intros.
- Rewrite <- H7; Rewrite <- H10; Generalize H6.
- Generalize (app_ass x4 l1 (Cons x2 Nil)); Intro E1.
- Rewrite -> E1.
- Intro.
- Generalize (Hind x4 (l1^(Cons x2 Nil)) H11) .
- Induction 1;Split.
- Auto with sets.
-
- Generalize H14.
- Rewrite <- H10; Intro.
- Apply d_conc;Auto with sets.
+ intros z D.
+ elim D.
+ intros.
+ cut (x ++ y = Nil); auto with sets; intro.
+ generalize (app_eq_nil _ _ H0); simple induction 1.
+ intros.
+ rewrite H2; rewrite H3; split; apply d_nil.
+
+ intros.
+ cut (x0 ++ y = Cons x Nil); auto with sets.
+ intros E.
+ generalize (app_eq_unit _ _ E); simple induction 1.
+ simple induction 1; intros.
+ rewrite H2; rewrite H3; split.
+ apply d_nil.
+
+ apply d_one.
+
+ simple induction 1; intros.
+ rewrite H2; rewrite H3; split.
+ apply d_one.
+
+ apply d_nil.
+
+ do 5 intro.
+ intros Hind.
+ do 2 intro.
+ generalize x0.
+ apply rev_ind with
+ (A := A)
+ (P := fun y0:List =>
+ forall x0:List,
+ (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 ->
+ Descl x0 /\ Descl y0).
+
+ intro.
+ generalize (app_nil_end x1); simple induction 1; simple induction 1.
+ split. apply d_conc; auto with sets.
+
+ apply d_nil.
+
+ do 3 intro.
+ generalize x1.
+ apply rev_ind with
+ (A := A)
+ (P := fun l0:List =>
+ forall (x1:A) (x0:List),
+ (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ l0 ++ Cons x1 Nil ->
+ Descl x0 /\ Descl (l0 ++ Cons x1 Nil)).
+
+
+ simpl in |- *.
+ split.
+ generalize (app_inj_tail _ _ _ _ H2); simple induction 1.
+ simple induction 1; auto with sets.
+
+ apply d_one.
+ do 5 intro.
+ generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)).
+ simple induction 1.
+ generalize (app_ass x4 l1 (Cons x2 Nil)); simple induction 1.
+ intro E.
+ generalize (app_inj_tail _ _ _ _ E).
+ simple induction 1; intros.
+ generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros.
+ rewrite <- H7; rewrite <- H10; generalize H6.
+ generalize (app_ass x4 l1 (Cons x2 Nil)); intro E1.
+ rewrite E1.
+ intro.
+ generalize (Hind x4 (l1 ++ Cons x2 Nil) H11).
+ simple induction 1; split.
+ auto with sets.
+
+ generalize H14.
+ rewrite <- H10; intro.
+ apply d_conc; auto with sets.
Qed.
-Lemma dist_Desc_concat : (x,y:List)(Descl x^y)->(Descl x)/\(Descl y).
+Lemma dist_Desc_concat :
+ forall x y:List, Descl (x ++ y) -> Descl x /\ Descl y.
Proof.
- Intros.
- Apply (dist_aux (x^y) H x y); Auto with sets.
+ intros.
+ apply (dist_aux (x ++ y) H x y); auto with sets.
Qed.
-Lemma desc_end:(a,b:A)(x:List)
- (Descl x^(Cons a Nil)) /\ (ltl x^(Cons a Nil) (Cons b Nil))
- -> (clos_trans A leA a b).
+Lemma desc_end :
+ forall (a b:A) (x:List),
+ Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) ->
+ clos_trans A leA a b.
Proof.
- Intros a b x.
- Case x.
- Simpl.
- Induction 1.
- Intros.
- Inversion H1;Auto with sets.
- Inversion H3.
-
- Induction 1.
- Generalize (app_comm_cons l (Cons a Nil) a0).
- Intros E; Rewrite <- E; Intros.
- Generalize (desc_tail l a a0 H0); Intro.
- Inversion H1.
- Apply t_trans with y:=a0 ;Auto with sets.
-
- Inversion H4.
+ intros a b x.
+ case x.
+ simpl in |- *.
+ simple induction 1.
+ intros.
+ inversion H1; auto with sets.
+ inversion H3.
+
+ simple induction 1.
+ generalize (app_comm_cons l (Cons a Nil) a0).
+ intros E; rewrite <- E; intros.
+ generalize (desc_tail l a a0 H0); intro.
+ inversion H1.
+ apply t_trans with (y := a0); auto with sets.
+
+ inversion H4.
Qed.
-Lemma ltl_unit: (x:List)(a,b:A)
- (Descl (x^(Cons a Nil))) -> (ltl x^(Cons a Nil) (Cons b Nil))
- -> (ltl x (Cons b Nil)).
+Lemma ltl_unit :
+ forall (x:List) (a b:A),
+ Descl (x ++ Cons a Nil) ->
+ ltl (x ++ Cons a Nil) (Cons b Nil) -> ltl x (Cons b Nil).
Proof.
- Intro.
- Case x.
- Intros;Apply (Lt_nil A leA).
+ intro.
+ case x.
+ intros; apply (Lt_nil A leA).
- Simpl;Intros.
- Inversion_clear H0.
- Apply (Lt_hd A leA a b);Auto with sets.
+ simpl in |- *; intros.
+ inversion_clear H0.
+ apply (Lt_hd A leA a b); auto with sets.
- Inversion_clear H1.
+ inversion_clear H1.
Qed.
-Lemma acc_app:
- (x1,x2:List)(y1:(Descl x1^x2))
- (Acc Power Lex_Exp (exist List Descl (x1^x2) y1))
- ->(x:List)
- (y:(Descl x))
- (ltl x (x1^x2))->(Acc Power Lex_Exp (exist List Descl x y)).
+Lemma acc_app :
+ forall (x1 x2:List) (y1:Descl (x1 ++ x2)),
+ Acc Lex_Exp << x1 ++ x2, y1 >> ->
+ forall (x:List) (y:Descl x), ltl x (x1 ++ x2) -> Acc Lex_Exp << x, y >>.
Proof.
- Intros.
- Apply (Acc_inv Power Lex_Exp (exist List Descl (x1^x2) y1)).
- Auto with sets.
+ intros.
+ apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)).
+ auto with sets.
- Unfold lex_exp ;Simpl;Auto with sets.
+ unfold lex_exp in |- *; simpl in |- *; auto with sets.
Qed.
-Theorem wf_lex_exp :
- (well_founded A leA)->(well_founded Power Lex_Exp).
+Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp.
Proof.
- Unfold 2 well_founded .
- Induction a;Intros x y.
- Apply Acc_intro.
- Induction y0.
- Unfold 1 lex_exp ;Simpl.
- Apply rev_ind with A:=A P:=[x:List]
- (x0:List)
- (y:(Descl x0))
- (ltl x0 x)
- ->(Acc Power Lex_Exp (exist List Descl x0 y)) .
- Intros.
- Inversion_clear H0.
-
- Intro.
- Generalize (well_founded_ind A (clos_trans A leA) (wf_clos_trans A leA H)).
- Intros GR.
- Apply GR with P:=[x0:A]
- (l:List)
- ((x1:List)
- (y:(Descl x1))
- (ltl x1 l)
- ->(Acc Power Lex_Exp (exist List Descl x1 y)))
- ->(x1:List)
- (y:(Descl x1))
- (ltl x1 (l^(Cons x0 Nil)))
- ->(Acc Power Lex_Exp (exist List Descl x1 y)) .
- Intro;Intros HInd; Intros.
- Generalize (right_prefix x2 l (Cons x1 Nil) H1) .
- Induction 1.
- Intro; Apply (H0 x2 y1 H3).
-
- Induction 1.
- Intro;Induction 1.
- Clear H4 H2.
- Intro;Generalize y1 ;Clear y1.
- Rewrite -> H2.
- Apply rev_ind with A:=A P:=[x3:List]
- (y1:(Descl (l^x3)))
- (ltl x3 (Cons x1 Nil))
- ->(Acc Power Lex_Exp
- (exist List Descl (l^x3) y1)) .
- Intros.
- Generalize (app_nil_end l) ;Intros Heq.
- Generalize y1 .
- Clear y1.
- Rewrite <- Heq.
- Intro.
- Apply Acc_intro.
- Induction y2.
- Unfold 1 lex_exp .
- Simpl;Intros x4 y3. Intros.
- Apply (H0 x4 y3);Auto with sets.
-
- Intros.
- Generalize (dist_Desc_concat l (l0^(Cons x4 Nil)) y1) .
- Induction 1.
- Intros.
- Generalize (desc_end x4 x1 l0 (conj ? ? H8 H5)) ; Intros.
- Generalize y1 .
- Rewrite <- (app_ass l l0 (Cons x4 Nil)); Intro.
- Generalize (HInd x4 H9 (l^l0)) ; Intros HInd2.
- Generalize (ltl_unit l0 x4 x1 H8 H5); Intro.
- Generalize (dist_Desc_concat (l^l0) (Cons x4 Nil) y2) .
- Induction 1;Intros.
- Generalize (H4 H12 H10); Intro.
- Generalize (Acc_inv Power Lex_Exp (exist List Descl (l^l0) H12) H14) .
- Generalize (acc_app l l0 H12 H14).
- Intros f g.
- Generalize (HInd2 f);Intro.
- Apply Acc_intro.
- Induction y3.
- Unfold 1 lex_exp ;Simpl; Intros.
- Apply H15;Auto with sets.
+ unfold well_founded at 2 in |- *.
+ simple induction a; intros x y.
+ apply Acc_intro.
+ simple induction y0.
+ unfold lex_exp at 1 in |- *; simpl in |- *.
+ apply rev_ind with
+ (A := A)
+ (P := fun x:List =>
+ forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>).
+ intros.
+ inversion_clear H0.
+
+ intro.
+ generalize (well_founded_ind (wf_clos_trans A leA H)).
+ intros GR.
+ apply GR with
+ (P := fun x0:A =>
+ forall l:List,
+ (forall (x1:List) (y:Descl x1),
+ ltl x1 l -> Acc Lex_Exp << x1, y >>) ->
+ forall (x1:List) (y:Descl x1),
+ ltl x1 (l ++ Cons x0 Nil) -> Acc Lex_Exp << x1, y >>).
+ intro; intros HInd; intros.
+ generalize (right_prefix x2 l (Cons x1 Nil) H1).
+ simple induction 1.
+ intro; apply (H0 x2 y1 H3).
+
+ simple induction 1.
+ intro; simple induction 1.
+ clear H4 H2.
+ intro; generalize y1; clear y1.
+ rewrite H2.
+ apply rev_ind with
+ (A := A)
+ (P := fun x3:List =>
+ forall y1:Descl (l ++ x3),
+ ltl x3 (Cons x1 Nil) -> Acc Lex_Exp << l ++ x3, y1 >>).
+ intros.
+ generalize (app_nil_end l); intros Heq.
+ generalize y1.
+ clear y1.
+ rewrite <- Heq.
+ intro.
+ apply Acc_intro.
+ simple induction y2.
+ unfold lex_exp at 1 in |- *.
+ simpl in |- *; intros x4 y3. intros.
+ apply (H0 x4 y3); auto with sets.
+
+ intros.
+ generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1).
+ simple induction 1.
+ intros.
+ generalize (desc_end x4 x1 l0 (conj H8 H5)); intros.
+ generalize y1.
+ rewrite <- (app_ass l l0 (Cons x4 Nil)); intro.
+ generalize (HInd x4 H9 (l ++ l0)); intros HInd2.
+ generalize (ltl_unit l0 x4 x1 H8 H5); intro.
+ generalize (dist_Desc_concat (l ++ l0) (Cons x4 Nil) y2).
+ simple induction 1; intros.
+ generalize (H4 H12 H10); intro.
+ generalize (Acc_inv H14).
+ generalize (acc_app l l0 H12 H14).
+ intros f g.
+ generalize (HInd2 f); intro.
+ apply Acc_intro.
+ simple induction y3.
+ unfold lex_exp at 1 in |- *; simpl in |- *; intros.
+ apply H15; auto with sets.
Qed.
-End Wf_Lexicographic_Exponentiation.
+End Wf_Lexicographic_Exponentiation. \ No newline at end of file