aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Wellfounded/Inverse_Image.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Wellfounded/Inverse_Image.v')
-rw-r--r--theories/Wellfounded/Inverse_Image.v55
1 files changed, 26 insertions, 29 deletions
diff --git a/theories/Wellfounded/Inverse_Image.v b/theories/Wellfounded/Inverse_Image.v
index ac828ac1a..66a7f5b5b 100644
--- a/theories/Wellfounded/Inverse_Image.v
+++ b/theories/Wellfounded/Inverse_Image.v
@@ -12,47 +12,44 @@
Section Inverse_Image.
- Variables A,B:Set.
- Variable R : B->B->Prop.
- Variable f:A->B.
+ Variables A B : Set.
+ Variable R : B -> B -> Prop.
+ Variable f : A -> B.
- Local Rof : A->A->Prop := [x,y:A](R (f x) (f y)).
+ Let Rof (x y:A) : Prop := R (f x) (f y).
- Remark Acc_lemma : (y:B)(Acc B R y)->(x:A)(y=(f x))->(Acc A Rof x).
- NewInduction 1 as [y _ IHAcc]; Intros x H.
- Apply Acc_intro; Intros y0 H1.
- Apply (IHAcc (f y0)); Try Trivial.
- Rewrite H; Trivial.
+ Remark Acc_lemma : forall y:B, Acc R y -> forall x:A, y = f x -> Acc Rof x.
+ induction 1 as [y _ IHAcc]; intros x H.
+ apply Acc_intro; intros y0 H1.
+ apply (IHAcc (f y0)); try trivial.
+ rewrite H; trivial.
Qed.
- Lemma Acc_inverse_image : (x:A)(Acc B R (f x)) -> (Acc A Rof x).
- Intros; Apply (Acc_lemma (f x)); Trivial.
+ Lemma Acc_inverse_image : forall x:A, Acc R (f x) -> Acc Rof x.
+ intros; apply (Acc_lemma (f x)); trivial.
Qed.
- Theorem wf_inverse_image: (well_founded B R)->(well_founded A Rof).
- Red; Intros; Apply Acc_inverse_image; Auto.
+ Theorem wf_inverse_image : well_founded R -> well_founded Rof.
+ red in |- *; intros; apply Acc_inverse_image; auto.
Qed.
Variable F : A -> B -> Prop.
- Local RoF : A -> A -> Prop := [x,y]
- (EX b : B | (F x b) & (c:B)(F y c)->(R b c)).
+ Let RoF (x y:A) : Prop :=
+ exists2 b : B | F x b & (forall c:B, F y c -> R b c).
-Lemma Acc_inverse_rel :
- (b:B)(Acc B R b)->(x:A)(F x b)->(Acc A RoF x).
-NewInduction 1 as [x _ IHAcc]; Intros x0 H2.
-Constructor; Intros y H3.
-NewDestruct H3.
-Apply (IHAcc x1); Auto.
-Save.
+Lemma Acc_inverse_rel : forall b:B, Acc R b -> forall x:A, F x b -> Acc RoF x.
+induction 1 as [x _ IHAcc]; intros x0 H2.
+constructor; intros y H3.
+destruct H3.
+apply (IHAcc x1); auto.
+Qed.
-Theorem wf_inverse_rel :
- (well_founded B R)->(well_founded A RoF).
- Red; Constructor; Intros.
- Case H0; Intros.
- Apply (Acc_inverse_rel x); Auto.
-Save.
+Theorem wf_inverse_rel : well_founded R -> well_founded RoF.
+ red in |- *; constructor; intros.
+ case H0; intros.
+ apply (Acc_inverse_rel x); auto.
+Qed.
End Inverse_Image.
-