aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Rstar.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Rstar.v')
-rwxr-xr-xtheories/Relations/Rstar.v83
1 files changed, 46 insertions, 37 deletions
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
index 90ab6d6c2..349650629 100755
--- a/theories/Relations/Rstar.v
+++ b/theories/Relations/Rstar.v
@@ -13,66 +13,75 @@
Section Rstar.
Variable A : Type.
-Variable R : A->A->Prop.
+Variable R : A -> A -> Prop.
(** Definition of the reflexive-transitive closure [R*] of [R] *)
(** Smallest reflexive [P] containing [R o P] *)
-Definition Rstar := [x,y:A](P:A->A->Prop)
- ((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y).
+Definition Rstar (x y:A) :=
+ forall P:A -> A -> Prop,
+ (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
-Theorem Rstar_reflexive: (x:A)(Rstar x x).
- Proof [x:A][P:A->A->Prop]
- [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
- (h1 x).
+Theorem Rstar_reflexive : forall x:A, Rstar x x.
+ Proof
+ fun (x:A) (P:A -> A -> Prop) (h1:forall u:A, P u u)
+ (h2:forall u v w:A, R u v -> P v w -> P u w) =>
+ h1 x.
-Theorem Rstar_R: (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z).
- Proof [x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)]
- [P:A->A->Prop]
- [h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
- (h2 x y z t1 (t2 P h1 h2)).
+Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
+ Proof
+ fun (x y z:A) (t1:R x y) (t2:Rstar y z) (P:A -> A -> Prop)
+ (h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) =>
+ h2 x y z t1 (t2 P h1 h2).
(** We conclude with transitivity of [Rstar] : *)
-Theorem Rstar_transitive: (x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z).
- Proof [x:A][y:A][z:A][h:(Rstar x y)]
- (h ([u:A][v:A](Rstar v z)->(Rstar u z))
- ([u:A][t:(Rstar u z)]t)
- ([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)]
- [t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))).
+Theorem Rstar_transitive :
+ forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
+ Proof
+ fun (x y z:A) (h:Rstar x y) =>
+ h (fun u v:A => Rstar v z -> Rstar u z) (fun (u:A) (t:Rstar u z) => t)
+ (fun (u v w:A) (t1:R u v) (t2:Rstar w z -> Rstar v z)
+ (t3:Rstar w z) => Rstar_R u v z t1 (t2 t3)).
(** Another characterization of [R*] *)
(** Smallest reflexive [P] containing [R o R*] *)
-Definition Rstar' := [x:A][y:A](P:A->A->Prop)
- ((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y).
+Definition Rstar' (x y:A) :=
+ forall P:A -> A -> Prop,
+ P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
-Theorem Rstar'_reflexive: (x:A)(Rstar' x x).
- Proof [x:A][P:A->A->Prop][h:(P x x)][h':(u:A)(R x u)->(Rstar u x)->(P x x)]h.
+Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
+ Proof
+ fun (x:A) (P:A -> A -> Prop) (h:P x x)
+ (h':forall u:A, R x u -> Rstar u x -> P x x) => h.
-Theorem Rstar'_R: (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar' x y).
- Proof [x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)]
- [P:A->A->Prop][h1:(P x x)]
- [h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2).
+Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
+ Proof
+ fun (x y z:A) (t1:R x z) (t2:Rstar z y) (P:A -> A -> Prop)
+ (h1:P x x) (h2:forall u:A, R x u -> Rstar u y -> P x y) =>
+ h2 z t1 t2.
(** Equivalence of the two definitions: *)
-Theorem Rstar'_Rstar: (x:A)(y:A)(Rstar' x y)->(Rstar x y).
- Proof [x:A][y:A][h:(Rstar' x y)]
- (h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))).
+Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
+ Proof
+ fun (x y:A) (h:Rstar' x y) =>
+ h Rstar (Rstar_reflexive x) (fun u:A => Rstar_R x u y).
-Theorem Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y).
- Proof [x:A][y:A][h:(Rstar x y)](h Rstar' ([u:A](Rstar'_reflexive u))
- ([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar' v w)]
- (Rstar'_R u w v h1 (Rstar'_Rstar v w h2)))).
+Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
+ Proof
+ fun (x y:A) (h:Rstar x y) =>
+ h Rstar' (fun u:A => Rstar'_reflexive u)
+ (fun (u v w:A) (h1:R u v) (h2:Rstar' v w) =>
+ Rstar'_R u w v h1 (Rstar'_Rstar v w h2)).
(** Property of Commutativity of two relations *)
-Definition commut := [A:Set][R1,R2:A->A->Prop]
- (x,y:A)(R1 y x)->(z:A)(R2 z y)
- ->(EX y':A |(R2 y' x) & (R1 z y')).
+Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
+ forall x y:A,
+ R1 y x -> forall z:A, R2 z y -> exists2 y' : A | R2 y' x & R1 z y'.
End Rstar.
-