aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Relation_Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Relation_Operators.v')
-rwxr-xr-xtheories/Relations/Relation_Operators.v168
1 files changed, 89 insertions, 79 deletions
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index 7b07ac0db..0d5f2fd97 100755
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -16,72 +16,76 @@
(* L. Paulson JSC (1986) 2, 325-355 *)
(****************************************************************************)
-Require Relation_Definitions.
-Require PolyList.
-Require PolyListSyntax.
+Require Import Relation_Definitions.
+Require Import List.
(** Some operators to build relations *)
Section Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
+ Variable A : Set.
+ Variable R : relation A.
- Inductive clos_trans : A->A->Prop :=
- t_step: (x,y:A)(R x y)->(clos_trans x y)
- | t_trans: (x,y,z:A)(clos_trans x y)->(clos_trans y z)->(clos_trans x z).
+ Inductive clos_trans : A -> A -> Prop :=
+ | t_step : forall x y:A, R x y -> clos_trans x y
+ | t_trans :
+ forall x y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z.
End Transitive_Closure.
Section Reflexive_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_trans: (relation A) :=
- rt_step: (x,y:A)(R x y)->(clos_refl_trans x y)
- | rt_refl: (x:A)(clos_refl_trans x x)
- | rt_trans: (x,y,z: A)(clos_refl_trans x y)->(clos_refl_trans y z)
- ->(clos_refl_trans x z).
+ Variable A : Set.
+ Variable R : relation A.
+
+ Inductive clos_refl_trans : relation A :=
+ | rt_step : forall x y:A, R x y -> clos_refl_trans x y
+ | rt_refl : forall x:A, clos_refl_trans x x
+ | rt_trans :
+ forall x y z:A,
+ clos_refl_trans x y -> clos_refl_trans y z -> clos_refl_trans x z.
End Reflexive_Transitive_Closure.
Section Reflexive_Symetric_Transitive_Closure.
- Variable A: Set.
- Variable R: (relation A).
-
- Inductive clos_refl_sym_trans: (relation A) :=
- rst_step: (x,y:A)(R x y)->(clos_refl_sym_trans x y)
- | rst_refl: (x:A)(clos_refl_sym_trans x x)
- | rst_sym: (x,y:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y x)
- | rst_trans: (x,y,z:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y z)
- ->(clos_refl_sym_trans x z).
+ Variable A : Set.
+ Variable R : relation A.
+
+ Inductive clos_refl_sym_trans : relation A :=
+ | rst_step : forall x y:A, R x y -> clos_refl_sym_trans x y
+ | rst_refl : forall x:A, clos_refl_sym_trans x x
+ | rst_sym :
+ forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
+ | rst_trans :
+ forall x y z:A,
+ clos_refl_sym_trans x y ->
+ clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
End Reflexive_Symetric_Transitive_Closure.
Section Transposee.
- Variable A: Set.
- Variable R: (relation A).
+ Variable A : Set.
+ Variable R : relation A.
- Definition transp := [x,y:A](R y x).
+ Definition transp (x y:A) := R y x.
End Transposee.
Section Union.
- Variable A: Set.
- Variable R1,R2: (relation A).
+ Variable A : Set.
+ Variables R1 R2 : relation A.
- Definition union := [x,y:A](R1 x y)\/(R2 x y).
+ Definition union (x y:A) := R1 x y \/ R2 x y.
End Union.
Section Disjoint_Union.
-Variable A,B:Set.
-Variable leA: A->A->Prop.
-Variable leB: B->B->Prop.
+Variables A B : Set.
+Variable leA : A -> A -> Prop.
+Variable leB : B -> B -> Prop.
-Inductive le_AsB : A+B->A+B->Prop :=
- le_aa: (x,y:A) (leA x y) -> (le_AsB (inl A B x) (inl A B y))
-| le_ab: (x:A)(y:B) (le_AsB (inl A B x) (inr A B y))
-| le_bb: (x,y:B) (leB x y) -> (le_AsB (inr A B x) (inr A B y)).
+Inductive le_AsB : A + B -> A + B -> Prop :=
+ | le_aa : forall x y:A, leA x y -> le_AsB (inl B x) (inl B y)
+ | le_ab : forall (x:A) (y:B), le_AsB (inl B x) (inr A y)
+ | le_bb : forall x y:B, leB x y -> le_AsB (inr A x) (inr A y).
End Disjoint_Union.
@@ -90,68 +94,74 @@ End Disjoint_Union.
Section Lexicographic_Product.
(* Lexicographic order on dependent pairs *)
-Variable A:Set.
-Variable B:A->Set.
-Variable leA: A->A->Prop.
-Variable leB: (x:A)(B x)->(B x)->Prop.
-
-Inductive lexprod : (sigS A B) -> (sigS A B) ->Prop :=
- left_lex : (x,x':A)(y:(B x)) (y':(B x'))
- (leA x x') ->(lexprod (existS A B x y) (existS A B x' y'))
-| right_lex : (x:A) (y,y':(B x))
- (leB x y y') -> (lexprod (existS A B x y) (existS A B x y')).
+Variable A : Set.
+Variable B : A -> Set.
+Variable leA : A -> A -> Prop.
+Variable leB : forall x:A, B x -> B x -> Prop.
+
+Inductive lexprod : sigS B -> sigS B -> Prop :=
+ | left_lex :
+ forall (x x':A) (y:B x) (y':B x'),
+ leA x x' -> lexprod (existS B x y) (existS B x' y')
+ | right_lex :
+ forall (x:A) (y y':B x),
+ leB x y y' -> lexprod (existS B x y) (existS B x y').
End Lexicographic_Product.
Section Symmetric_Product.
- Variable A:Set.
- Variable B:Set.
- Variable leA: A->A->Prop.
- Variable leB: B->B->Prop.
+ Variable A : Set.
+ Variable B : Set.
+ Variable leA : A -> A -> Prop.
+ Variable leB : B -> B -> Prop.
- Inductive symprod : (A*B) -> (A*B) ->Prop :=
- left_sym : (x,x':A)(leA x x')->(y:B)(symprod (x,y) (x',y))
- | right_sym : (y,y':B)(leB y y')->(x:A)(symprod (x,y) (x,y')).
+ Inductive symprod : A * B -> A * B -> Prop :=
+ | left_sym :
+ forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
+ | right_sym :
+ forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
End Symmetric_Product.
Section Swap.
- Variable A:Set.
- Variable R:A->A->Prop.
-
- Inductive swapprod: (A*A)->(A*A)->Prop :=
- sp_noswap: (x,x':A*A)(symprod A A R R x x')->(swapprod x x')
- | sp_swap: (x,y:A)(p:A*A)(symprod A A R R (x,y) p)->(swapprod (y,x) p).
+ Variable A : Set.
+ Variable R : A -> A -> Prop.
+
+ Inductive swapprod : A * A -> A * A -> Prop :=
+ | sp_noswap : forall x x':A * A, symprod A A R R x x' -> swapprod x x'
+ | sp_swap :
+ forall (x y:A) (p:A * A),
+ symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.
Section Lexicographic_Exponentiation.
Variable A : Set.
-Variable leA : A->A->Prop.
-Local Nil := (nil A).
-Local List := (list A).
+Variable leA : A -> A -> Prop.
+Let Nil := nil (A:=A).
+Let List := list A.
-Inductive Ltl : List->List->Prop :=
- Lt_nil: (a:A)(x:List)(Ltl Nil (cons a x))
-| Lt_hd : (a,b:A) (leA a b)-> (x,y:(list A))(Ltl (cons a x) (cons b y))
-| Lt_tl : (a:A)(x,y:List)(Ltl x y) -> (Ltl (cons a x) (cons a y)).
+Inductive Ltl : List -> List -> Prop :=
+ | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
+ | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
+ | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).
-Inductive Desc : List->Prop :=
- d_nil : (Desc Nil)
-| d_one : (x:A)(Desc (cons x Nil))
-| d_conc : (x,y:A)(l:List)(leA x y)
- -> (Desc l^(cons y Nil))->(Desc (l^(cons y Nil))^(cons x Nil)).
+Inductive Desc : List -> Prop :=
+ | d_nil : Desc Nil
+ | d_one : forall x:A, Desc (x :: Nil)
+ | d_conc :
+ forall (x y:A) (l:List),
+ leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
-Definition Pow :Set := (sig List Desc).
+Definition Pow : Set := sig Desc.
-Definition lex_exp : Pow -> Pow ->Prop :=
- [a,b:Pow](Ltl (proj1_sig List Desc a) (proj1_sig List Desc b)).
+Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.
-Hints Unfold transp union : sets v62.
-Hints Resolve t_step rt_step rt_refl rst_step rst_refl : sets v62.
-Hints Immediate rst_sym : sets v62.
+Hint Unfold transp union: sets v62.
+Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62.
+Hint Immediate rst_sym: sets v62. \ No newline at end of file