aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Relation_Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Relation_Operators.v')
-rw-r--r--theories/Relations/Relation_Operators.v74
1 files changed, 37 insertions, 37 deletions
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index b538620d1..e4918d40e 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -24,7 +24,7 @@ Require Import List.
Section Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
Inductive clos_trans (x: A) : A -> Prop :=
| t_step : forall y:A, R x y -> clos_trans x y
| t_trans :
@@ -48,16 +48,16 @@ End Reflexive_Transitive_Closure.
Section Reflexive_Symetric_Transitive_Closure.
Variable A : Type.
Variable R : relation A.
-
+
Inductive clos_refl_sym_trans : relation A :=
| rst_step : forall x y:A, R x y -> clos_refl_sym_trans x y
| rst_refl : forall x:A, clos_refl_sym_trans x x
| rst_sym :
- forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
+ forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
| rst_trans :
- forall x y z:A,
- clos_refl_sym_trans x y ->
- clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
+ forall x y z:A,
+ clos_refl_sym_trans x y ->
+ clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
End Reflexive_Symetric_Transitive_Closure.
@@ -92,18 +92,18 @@ End Disjoint_Union.
Section Lexicographic_Product.
-(* Lexicographic order on dependent pairs *)
+ (* Lexicographic order on dependent pairs *)
-Variable A : Set.
-Variable B : A -> Set.
-Variable leA : A -> A -> Prop.
-Variable leB : forall x:A, B x -> B x -> Prop.
+ Variable A : Set.
+ Variable B : A -> Set.
+ Variable leA : A -> A -> Prop.
+ Variable leB : forall x:A, B x -> B x -> Prop.
-Inductive lexprod : sigS B -> sigS B -> Prop :=
- | left_lex :
+ Inductive lexprod : sigS B -> sigS B -> Prop :=
+ | left_lex :
forall (x x':A) (y:B x) (y':B x'),
leA x x' -> lexprod (existS B x y) (existS B x' y')
- | right_lex :
+ | right_lex :
forall (x:A) (y y':B x),
leB x y y' -> lexprod (existS B x y) (existS B x y').
End Lexicographic_Product.
@@ -117,9 +117,9 @@ Section Symmetric_Product.
Inductive symprod : A * B -> A * B -> Prop :=
| left_sym :
- forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
+ forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
| right_sym :
- forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
+ forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').
End Symmetric_Product.
@@ -131,34 +131,34 @@ Section Swap.
Inductive swapprod : A * A -> A * A -> Prop :=
| sp_noswap : forall x x':A * A, symprod A A R R x x' -> swapprod x x'
| sp_swap :
- forall (x y:A) (p:A * A),
- symprod A A R R (x, y) p -> swapprod (y, x) p.
+ forall (x y:A) (p:A * A),
+ symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.
Section Lexicographic_Exponentiation.
-
-Variable A : Set.
-Variable leA : A -> A -> Prop.
-Let Nil := nil (A:=A).
-Let List := list A.
-
-Inductive Ltl : List -> List -> Prop :=
- | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
- | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
- | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).
-
-
-Inductive Desc : List -> Prop :=
- | d_nil : Desc Nil
- | d_one : forall x:A, Desc (x :: Nil)
- | d_conc :
+
+ Variable A : Set.
+ Variable leA : A -> A -> Prop.
+ Let Nil := nil (A:=A).
+ Let List := list A.
+
+ Inductive Ltl : List -> List -> Prop :=
+ | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
+ | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
+ | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).
+
+
+ Inductive Desc : List -> Prop :=
+ | d_nil : Desc Nil
+ | d_one : forall x:A, Desc (x :: Nil)
+ | d_conc :
forall (x y:A) (l:List),
leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).
-Definition Pow : Set := sig Desc.
-
-Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
+ Definition Pow : Set := sig Desc.
+
+ Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).
End Lexicographic_Exponentiation.