aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Operators_Properties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Operators_Properties.v')
-rwxr-xr-xtheories/Relations/Operators_Properties.v100
1 files changed, 49 insertions, 51 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 0ca819b84..9534f707f 100755
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -12,55 +12,53 @@
(* Bruno Barras *)
(****************************************************************************)
-Require Relation_Definitions.
-Require Relation_Operators.
+Require Import Relation_Definitions.
+Require Import Relation_Operators.
Section Properties.
- Variable A: Set.
- Variable R: (relation A).
+ Variable A : Set.
+ Variable R : relation A.
- Local incl : (relation A)->(relation A)->Prop :=
- [R1,R2: (relation A)] (x,y:A) (R1 x y) -> (R2 x y).
+ Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
Section Clos_Refl_Trans.
- Lemma clos_rt_is_preorder: (preorder A (clos_refl_trans A R)).
-Apply Build_preorder.
-Exact (rt_refl A R).
+ Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
+apply Build_preorder.
+exact (rt_refl A R).
-Exact (rt_trans A R).
+exact (rt_trans A R).
Qed.
-Lemma clos_rt_idempotent:
- (incl (clos_refl_trans A (clos_refl_trans A R))
- (clos_refl_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Intros.
-Apply rt_trans with y; Auto with sets.
+Lemma clos_rt_idempotent :
+ incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
+red in |- *.
+induction 1; auto with sets.
+intros.
+apply rt_trans with y; auto with sets.
Qed.
- Lemma clos_refl_trans_ind_left: (A:Set)(R:A->A->Prop)(M:A)(P:A->Prop)
- (P M)
- ->((P0,N:A)
- (clos_refl_trans A R M P0)->(P P0)->(R P0 N)->(P N))
- ->(a:A)(clos_refl_trans A R M a)->(P a).
-Intros.
-Generalize H H0 .
-Clear H H0.
-Elim H1; Intros; Auto with sets.
-Apply H2 with x; Auto with sets.
-
-Apply H3.
-Apply H0; Auto with sets.
-
-Intros.
-Apply H5 with P0; Auto with sets.
-Apply rt_trans with y; Auto with sets.
+ Lemma clos_refl_trans_ind_left :
+ forall (A:Set) (R:A -> A -> Prop) (M:A) (P:A -> Prop),
+ P M ->
+ (forall P0 N:A, clos_refl_trans A R M P0 -> P P0 -> R P0 N -> P N) ->
+ forall a:A, clos_refl_trans A R M a -> P a.
+intros.
+generalize H H0.
+clear H H0.
+elim H1; intros; auto with sets.
+apply H2 with x; auto with sets.
+
+apply H3.
+apply H0; auto with sets.
+
+intros.
+apply H5 with P0; auto with sets.
+apply rt_trans with y; auto with sets.
Qed.
@@ -69,30 +67,30 @@ End Clos_Refl_Trans.
Section Clos_Refl_Sym_Trans.
- Lemma clos_rt_clos_rst: (inclusion A (clos_refl_trans A R)
- (clos_refl_sym_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Apply rst_trans with y; Auto with sets.
+ Lemma clos_rt_clos_rst :
+ inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
+red in |- *.
+induction 1; auto with sets.
+apply rst_trans with y; auto with sets.
Qed.
- Lemma clos_rst_is_equiv: (equivalence A (clos_refl_sym_trans A R)).
-Apply Build_equivalence.
-Exact (rst_refl A R).
+ Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
+apply Build_equivalence.
+exact (rst_refl A R).
-Exact (rst_trans A R).
+exact (rst_trans A R).
-Exact (rst_sym A R).
+exact (rst_sym A R).
Qed.
- Lemma clos_rst_idempotent:
- (incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R)).
-Red.
-NewInduction 1; Auto with sets.
-Apply rst_trans with y; Auto with sets.
+ Lemma clos_rst_idempotent :
+ incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
+ (clos_refl_sym_trans A R).
+red in |- *.
+induction 1; auto with sets.
+apply rst_trans with y; auto with sets.
Qed.
End Clos_Refl_Sym_Trans.
-End Properties.
+End Properties. \ No newline at end of file