aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Operators_Properties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Operators_Properties.v')
-rw-r--r--theories/Relations/Operators_Properties.v44
1 files changed, 22 insertions, 22 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 2ced22298..d35841e00 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -24,7 +24,7 @@ Section Properties.
Variable R : relation A.
Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
+
Section Clos_Refl_Trans.
(** Correctness of the reflexive-transitive closure operator *)
@@ -33,7 +33,7 @@ Section Properties.
Proof.
apply Build_preorder.
exact (rt_refl A R).
-
+
exact (rt_trans A R).
Qed.
@@ -114,7 +114,7 @@ Section Properties.
apply t1n_trans; auto.
Qed.
- Lemma t1n_trans_equiv : forall x y,
+ Lemma t1n_trans_equiv : forall x y,
clos_trans A R x y <-> clos_trans_1n A R x y.
Proof.
split.
@@ -144,7 +144,7 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma tn1_trans_equiv : forall x y,
+ Lemma tn1_trans_equiv : forall x y,
clos_trans A R x y <-> clos_trans_n1 A R x y.
Proof.
split.
@@ -152,7 +152,7 @@ Section Properties.
apply tn1_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by left-step extension *)
Lemma R_rt1n : forall x y, R x y -> clos_refl_trans_1n A R x y.
@@ -167,7 +167,7 @@ Section Properties.
right with x;[assumption|left].
Qed.
- Lemma rt1n_trans : forall x y,
+ Lemma rt1n_trans : forall x y,
clos_refl_trans_1n A R x y -> clos_refl_trans A R x y.
Proof.
induction 1.
@@ -176,7 +176,7 @@ Section Properties.
constructor 1; auto.
Qed.
- Lemma trans_rt1n : forall x y,
+ Lemma trans_rt1n : forall x y,
clos_refl_trans A R x y -> clos_refl_trans_1n A R x y.
Proof.
induction 1.
@@ -190,7 +190,7 @@ Section Properties.
apply rt1n_trans; auto.
Qed.
- Lemma rt1n_trans_equiv : forall x y,
+ Lemma rt1n_trans_equiv : forall x y,
clos_refl_trans A R x y <-> clos_refl_trans_1n A R x y.
Proof.
split.
@@ -198,7 +198,7 @@ Section Properties.
apply rt1n_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by right-step extension *)
Lemma rtn1_trans : forall x y,
@@ -210,7 +210,7 @@ Section Properties.
constructor 1; assumption.
Qed.
- Lemma trans_rtn1 : forall x y,
+ Lemma trans_rtn1 : forall x y,
clos_refl_trans A R x y -> clos_refl_trans_n1 A R x y.
Proof.
induction 1.
@@ -221,7 +221,7 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma rtn1_trans_equiv : forall x y,
+ Lemma rtn1_trans_equiv : forall x y,
clos_refl_trans A R x y <-> clos_refl_trans_n1 A R x y.
Proof.
split.
@@ -240,7 +240,7 @@ Section Properties.
revert H H0.
induction H1; intros; auto with sets.
apply H1 with x; auto with sets.
-
+
apply IHclos_refl_trans2.
apply IHclos_refl_trans1; auto with sets.
@@ -270,10 +270,10 @@ Section Properties.
eauto.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric left-step extension *)
- Lemma rts1n_rts : forall x y,
+ Lemma rts1n_rts : forall x y,
clos_refl_sym_trans_1n A R x y -> clos_refl_sym_trans A R x y.
Proof.
induction 1.
@@ -283,7 +283,7 @@ Section Properties.
Qed.
Lemma rts_1n_trans : forall x y, clos_refl_sym_trans_1n A R x y ->
- forall z, clos_refl_sym_trans_1n A R y z ->
+ forall z, clos_refl_sym_trans_1n A R y z ->
clos_refl_sym_trans_1n A R x z.
induction 1.
auto.
@@ -301,7 +301,7 @@ Section Properties.
left.
Qed.
- Lemma rts_rts1n : forall x y,
+ Lemma rts_rts1n : forall x y,
clos_refl_sym_trans A R x y -> clos_refl_sym_trans_1n A R x y.
induction 1.
constructor 2 with y; auto.
@@ -311,7 +311,7 @@ Section Properties.
eapply rts_1n_trans; eauto.
Qed.
- Lemma rts_rts1n_equiv : forall x y,
+ Lemma rts_rts1n_equiv : forall x y,
clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_1n A R x y.
Proof.
split.
@@ -319,10 +319,10 @@ Section Properties.
apply rts1n_rts.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric right-step extension *)
- Lemma rtsn1_rts : forall x y,
+ Lemma rtsn1_rts : forall x y,
clos_refl_sym_trans_n1 A R x y -> clos_refl_sym_trans A R x y.
Proof.
induction 1.
@@ -332,7 +332,7 @@ Section Properties.
Qed.
Lemma rtsn1_trans : forall y z, clos_refl_sym_trans_n1 A R y z->
- forall x, clos_refl_sym_trans_n1 A R x y ->
+ forall x, clos_refl_sym_trans_n1 A R x y ->
clos_refl_sym_trans_n1 A R x z.
Proof.
induction 1.
@@ -352,7 +352,7 @@ Section Properties.
left.
Qed.
- Lemma rts_rtsn1 : forall x y,
+ Lemma rts_rtsn1 : forall x y,
clos_refl_sym_trans A R x y -> clos_refl_sym_trans_n1 A R x y.
Proof.
induction 1.
@@ -363,7 +363,7 @@ Section Properties.
eapply rtsn1_trans; eauto.
Qed.
- Lemma rts_rtsn1_equiv : forall x y,
+ Lemma rts_rtsn1_equiv : forall x y,
clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_n1 A R x y.
Proof.
split.