aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Relations/Newman.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Newman.v')
-rwxr-xr-xtheories/Relations/Newman.v134
1 files changed, 71 insertions, 63 deletions
diff --git a/theories/Relations/Newman.v b/theories/Relations/Newman.v
index 57e93240a..7de49f62f 100755
--- a/theories/Relations/Newman.v
+++ b/theories/Relations/Newman.v
@@ -8,108 +8,116 @@
(*i $Id$ i*)
-Require Rstar.
+Require Import Rstar.
Section Newman.
-Variable A: Type.
-Variable R: A->A->Prop.
+Variable A : Type.
+Variable R : A -> A -> Prop.
-Local Rstar := (Rstar A R).
-Local Rstar_reflexive := (Rstar_reflexive A R).
-Local Rstar_transitive := (Rstar_transitive A R).
-Local Rstar_Rstar' := (Rstar_Rstar' A R).
+Let Rstar := Rstar A R.
+Let Rstar_reflexive := Rstar_reflexive A R.
+Let Rstar_transitive := Rstar_transitive A R.
+Let Rstar_Rstar' := Rstar_Rstar' A R.
-Definition coherence := [x:A][y:A] (exT2 ? (Rstar x) (Rstar y)).
+Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).
-Theorem coherence_intro : (x:A)(y:A)(z:A)(Rstar x z)->(Rstar y z)->(coherence x y).
-Proof [x:A][y:A][z:A][h1:(Rstar x z)][h2:(Rstar y z)]
- (exT_intro2 A (Rstar x) (Rstar y) z h1 h2).
+Theorem coherence_intro :
+ forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
+Proof
+ fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
+ ex_intro2 (Rstar x) (Rstar y) z h1 h2.
(** A very simple case of coherence : *)
-Lemma Rstar_coherence : (x:A)(y:A)(Rstar x y)->(coherence x y).
- Proof [x:A][y:A][h:(Rstar x y)](coherence_intro x y y h (Rstar_reflexive y)).
+Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
+ Proof
+ fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).
(** coherence is symmetric *)
-Lemma coherence_sym: (x:A)(y:A)(coherence x y)->(coherence y x).
- Proof [x:A][y:A][h:(coherence x y)]
- (exT2_ind A (Rstar x) (Rstar y) (coherence y x)
- [w:A][h1:(Rstar x w)][h2:(Rstar y w)]
- (coherence_intro y x w h2 h1) h).
-
-Definition confluence :=
- [x:A](y:A)(z:A)(Rstar x y)->(Rstar x z)->(coherence y z).
+Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
+ Proof
+ fun (x y:A) (h:coherence x y) =>
+ ex2_ind
+ (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
+ coherence_intro y x w h2 h1) h.
+
+Definition confluence (x:A) :=
+ forall y z:A, Rstar x y -> Rstar x z -> coherence y z.
-Definition local_confluence :=
- [x:A](y:A)(z:A)(R x y)->(R x z)->(coherence y z).
+Definition local_confluence (x:A) :=
+ forall y z:A, R x y -> R x z -> coherence y z.
Definition noetherian :=
- (x:A)(P:A->Prop)((y:A)((z:A)(R y z)->(P z))->(P y))->(P x).
+ forall (x:A) (P:A -> Prop),
+ (forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x.
Section Newman_section.
(** The general hypotheses of the theorem *)
-Hypothesis Hyp1:noetherian.
-Hypothesis Hyp2:(x:A)(local_confluence x).
+Hypothesis Hyp1 : noetherian.
+Hypothesis Hyp2 : forall x:A, local_confluence x.
(** The induction hypothesis *)
Section Induct.
- Variable x:A.
- Hypothesis hyp_ind:(u:A)(R x u)->(confluence u).
+ Variable x : A.
+ Hypothesis hyp_ind : forall u:A, R x u -> confluence u.
(** Confluence in [x] *)
- Variables y,z:A.
- Hypothesis h1:(Rstar x y).
- Hypothesis h2:(Rstar x z).
+ Variables y z : A.
+ Hypothesis h1 : Rstar x y.
+ Hypothesis h2 : Rstar x z.
(** particular case [x->u] and [u->*y] *)
Section Newman_.
- Variable u:A.
- Hypothesis t1:(R x u).
- Hypothesis t2:(Rstar u y).
+ Variable u : A.
+ Hypothesis t1 : R x u.
+ Hypothesis t2 : Rstar u y.
(** In the usual diagram, we assume also [x->v] and [v->*z] *)
-Theorem Diagram : (v:A)(u1:(R x v))(u2:(Rstar v z))(coherence y z).
-
-Proof (* We draw the diagram ! *)
- [v:A][u1:(R x v)][u2:(Rstar v z)]
- (exT2_ind A (Rstar u) (Rstar v) (* local confluence in x for u,v *)
- (coherence y z) (* gives w, u->*w and v->*w *)
- ([w:A][s1:(Rstar u w)][s2:(Rstar v w)]
- (exT2_ind A (Rstar y) (Rstar w) (* confluence in u => coherence(y,w) *)
- (coherence y z) (* gives a, y->*a and z->*a *)
- ([a:A][v1:(Rstar y a)][v2:(Rstar w a)]
- (exT2_ind A (Rstar a) (Rstar z) (* confluence in v => coherence(a,z) *)
- (coherence y z) (* gives b, a->*b and z->*b *)
- ([b:A][w1:(Rstar a b)][w2:(Rstar z b)]
- (coherence_intro y z b (Rstar_transitive y a b v1 w1) w2))
- (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2)))
- (hyp_ind u t1 y w t2 s1)))
- (Hyp2 x u v t1 u1)).
+Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
+
+Proof
+ (* We draw the diagram ! *)
+ fun (v:A) (u1:R x v) (u2:Rstar v z) =>
+ ex2_ind
+ (* local confluence in x for u,v *)
+ (* gives w, u->*w and v->*w *)
+ (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
+ ex2_ind
+ (* confluence in u => coherence(y,w) *)
+ (* gives a, y->*a and z->*a *)
+ (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
+ ex2_ind
+ (* confluence in v => coherence(a,z) *)
+ (* gives b, a->*b and z->*b *)
+ (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
+ coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
+ (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
+ (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).
-Theorem caseRxy : (coherence y z).
-Proof (Rstar_Rstar' x z h2
- ([v:A][w:A](coherence y w))
- (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
- Diagram). (*i case x->v->*z i*)
+Theorem caseRxy : coherence y z.
+Proof
+ Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
+ (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*)
+ Diagram. (*i case x->v->*z i*)
End Newman_.
-Theorem Ind_proof : (coherence y z).
-Proof (Rstar_Rstar' x y h1 ([u:A][v:A](coherence v z))
- (Rstar_coherence x z h2) (*i case x=y i*)
- caseRxy). (*i case x->u->*z i*)
+Theorem Ind_proof : coherence y z.
+Proof
+ Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
+ (Rstar_coherence x z h2) (*i case x=y i*)
+ caseRxy. (*i case x->u->*z i*)
End Induct.
-Theorem Newman : (x:A)(confluence x).
-Proof [x:A](Hyp1 x confluence Ind_proof).
+Theorem Newman : forall x:A, confluence x.
+Proof fun x:A => Hyp1 x confluence Ind_proof.
End Newman_section.
End Newman.
-