diff options
Diffstat (limited to 'theories/Reals')
-rw-r--r-- | theories/Reals/Rlogic.v | 166 |
1 files changed, 83 insertions, 83 deletions
diff --git a/theories/Reals/Rlogic.v b/theories/Reals/Rlogic.v index 35f254e13..e10c3ab40 100644 --- a/theories/Reals/Rlogic.v +++ b/theories/Reals/Rlogic.v @@ -6,16 +6,16 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(** This module proves the decidablitiy of arithmetical statements from +(** This module proves the decidablity of arithmetical statements from the axiom that the order of the real numbers is decidable. *) -(** Assuming a decidable predicate [P n], A series is constructied who's +(** Assuming a decidable predicate [P n], A series is constructed who's [n]th term is 1/2^n if [P n] holds and 0 otherwise. This sum reaches 2 only if [P n] holds for all [n], otherwise the sum is less than 2. Comparing the sum to 2 decides if [forall n, P n] or [~forall n, P n] *) (** One can iterate this lemma and use classical logic to decide any -statement in the arithmetical heirarchy. *) +statement in the arithmetical hierarchy. *) (** Contributed by Cezary Kaliszyk and Russell O'Connor *) @@ -28,118 +28,118 @@ Section Arithmetical_dec. Variable P : nat -> Prop. Hypothesis HP : forall n, {P n} + {~P n}. -Let positive_sums_lemma : (forall (m n : nat) (f : nat -> R), (lt m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n). +Let ge_fun_sums_ge_lemma : (forall (m n : nat) (f : nat -> R), (lt m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n). intros m n f mn fpos. replace (sum_f_R0 f m) with (sum_f_R0 f m + 0) by ring. rewrite (tech2 f m n mn). -assert (sum_f_R0 f m = sum_f_R0 f m + 0) by ring. apply Rplus_le_compat_l. -induction (n - S m)%nat. - simpl. + induction (n - S m)%nat; simpl in *. apply fpos. -simpl in *. replace 0 with (0 + 0) by ring. apply (Rplus_le_compat _ _ _ _ IHn0 (fpos (S (m + S n0)%nat))). Qed. -Let positive_sums : (forall (m n : nat) (f : nat -> R), (le m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n). +Let ge_fun_sums_ge : (forall (m n : nat) (f : nat -> R), (le m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n). intros m n f mn pos. -elim (le_lt_or_eq _ _ mn). -intro; apply positive_sums_lemma; assumption. + elim (le_lt_or_eq _ _ mn). + intro; apply ge_fun_sums_ge_lemma; assumption. intro H; rewrite H; auto with *. Qed. -Lemma forall_dec : {forall n, P n} + {~forall n, P n}. -Proof. -set (f:=fun n => (if HP n then (1/2)^n else 0)%R). - assert (Hg:Cauchy_crit_series f). - intros e He. - assert (X:(Pser (fun n:nat => 1) (1/2) (/ (1 - (1/2))))%R). - apply GP_infinite. - apply Rabs_def1; fourier. - assert (He':e/2 > 0) by fourier. - destruct (X _ He') as [N HN]. - clear X. - exists N. - intros n m Hn Hm. - replace e with (e/2 + e/2)%R by field. - set (g:=(fun n0 : nat => 1 * (1 / 2) ^ n0)) in *. - assert (R_dist (sum_f_R0 g n) (sum_f_R0 g m) < e / 2 + e / 2). - apply Rle_lt_trans with (R_dist (sum_f_R0 g n) 2+R_dist 2 (sum_f_R0 g m))%R. - apply R_dist_tri. - replace (/(1 - 1/2)) with 2 in HN by field. - cut (forall n, (n >= N)%nat -> R_dist (sum_f_R0 g n) 2 < e/2)%R. - intros Z. - apply Rplus_lt_compat. - apply Z; assumption. - rewrite R_dist_sym. +Let f:=fun n => (if HP n then (1/2)^n else 0)%R. + +Lemma cauchy_crit_geometric_dec_fun : Cauchy_crit_series f. +intros e He. +assert (X:(Pser (fun n:nat => 1) (1/2) (/ (1 - (1/2))))%R). + apply GP_infinite. + apply Rabs_def1; fourier. +assert (He':e/2 > 0) by fourier. +destruct (X _ He') as [N HN]. +clear X. +exists N. +intros n m Hn Hm. +replace e with (e/2 + e/2)%R by field. +set (g:=(fun n0 : nat => 1 * (1 / 2) ^ n0)) in *. +assert (R_dist (sum_f_R0 g n) (sum_f_R0 g m) < e / 2 + e / 2). + apply Rle_lt_trans with (R_dist (sum_f_R0 g n) 2+R_dist 2 (sum_f_R0 g m))%R. + apply R_dist_tri. + replace (/(1 - 1/2)) with 2 in HN by field. + cut (forall n, (n >= N)%nat -> R_dist (sum_f_R0 g n) 2 < e/2)%R. + intros Z. + apply Rplus_lt_compat. apply Z; assumption. - clear - HN He. - intros n Hn. - apply HN. - auto. - eapply Rle_lt_trans;[|apply H]. - clear -positive_sums n. - cut (forall n m, (m <= n)%nat -> R_dist (sum_f_R0 f n) (sum_f_R0 f m) <= R_dist (sum_f_R0 g n) (sum_f_R0 g m)). - intros H. - destruct (le_lt_dec m n). - apply H; assumption. rewrite R_dist_sym. - rewrite (R_dist_sym (sum_f_R0 g n)). - apply H; auto with *. - clear n m. - intros n m Hnm. - unfold R_dist. - cut (forall i : nat, (1 / 2) ^ i >= 0). intro RPosPow. + apply Z; assumption. + clear - HN He. + intros n Hn. + apply HN. + auto. +eapply Rle_lt_trans;[|apply H]. +clear -ge_fun_sums_ge n. +cut (forall n m, (m <= n)%nat -> R_dist (sum_f_R0 f n) (sum_f_R0 f m) <= R_dist (sum_f_R0 g n) (sum_f_R0 g m)). + intros H. + destruct (le_lt_dec m n). + apply H; assumption. + rewrite R_dist_sym. + rewrite (R_dist_sym (sum_f_R0 g n)). + apply H; auto with *. +clear n m. +intros n m Hnm. +unfold R_dist. +cut (forall i : nat, (1 / 2) ^ i >= 0). intro RPosPow. +rewrite Rabs_pos_eq. rewrite Rabs_pos_eq. - rewrite Rabs_pos_eq. - cut (sum_f_R0 g m - sum_f_R0 f m <= sum_f_R0 g n - sum_f_R0 f n). - intros; fourier. + cut (sum_f_R0 g m - sum_f_R0 f m <= sum_f_R0 g n - sum_f_R0 f n). + intros; fourier. do 2 rewrite <- minus_sum. - apply (positive_sums m n (fun i : nat => g i - f i) Hnm). - intro i. - unfold f, g. - elim (HP i); intro; ring_simplify; auto with *. - cut (sum_f_R0 g m <= sum_f_R0 g n). intro; fourier. - apply (positive_sums m n g Hnm). - intro. unfold g. - ring_simplify. - apply Rge_le. - apply RPosPow. - cut (sum_f_R0 f m <= sum_f_R0 f n). intro; fourier. - apply (positive_sums m n f Hnm). + apply (ge_fun_sums_ge m n (fun i : nat => g i - f i) Hnm). + intro i. + unfold f, g. + elim (HP i); intro; ring_simplify; auto with *. + cut (sum_f_R0 g m <= sum_f_R0 g n). + intro; fourier. + apply (ge_fun_sums_ge m n g Hnm). + intro. unfold g. + ring_simplify. + apply Rge_le. + apply RPosPow. + cut (sum_f_R0 f m <= sum_f_R0 f n). + intro; fourier. + apply (ge_fun_sums_ge m n f Hnm). intro; unfold f. elim (HP i); intro; simpl. - apply Rge_le. - apply RPosPow. + apply Rge_le. + apply RPosPow. auto with *. - induction i. - simpl. apply Rle_ge. auto with *. - simpl. fourier. +intro i. +apply Rle_ge. +apply pow_le. +fourier. +Qed. - destruct (cv_cauchy_2 _ Hg). +Lemma forall_dec : {forall n, P n} + {~forall n, P n}. +Proof. +destruct (cv_cauchy_2 _ cauchy_crit_geometric_dec_fun). cut (2 <= x <-> forall n : nat, P n). intro H. elim (Rle_dec 2 x); intro X. left; tauto. right; tauto. - - assert (A:Rabs(1/2) < 1) by (apply Rabs_def1; fourier). - assert (A0:=(GP_infinite (1/2) A)). - symmetry. +assert (A:Rabs(1/2) < 1) by (apply Rabs_def1; fourier). +assert (A0:=(GP_infinite (1/2) A)). +symmetry. split; intro. replace 2 with (/ (1 - (1 / 2))) by field. unfold Pser, infinit_sum in A0. eapply Rle_cv_lim;[|unfold Un_cv; apply A0 |apply u]. intros n. clear -n H. - induction n; unfold f;simpl. + induction n; unfold f;simpl. destruct (HP 0); auto with *. elim n; auto. apply Rplus_le_compat; auto. destruct (HP (S n)); auto with *. elim n0; auto. - intros n. destruct (HP n); auto. elim (RIneq.Rle_not_lt _ _ H). @@ -173,12 +173,12 @@ assert (Z: Un_cv (fun N : nat => sum_f_R0 g N) ((1/2)^n)). intros H; simpl; unfold g at 2; destruct (eq_nat_dec (S a) n). - rewrite IHa1. - ring. + rewrite IHa1. + ring. + omega. + ring_simplify. + apply IHa0. omega. - ring_simplify. - apply IHa0. - omega. elimtype False; omega. ring_simplify. apply IHa1. |