diff options
Diffstat (limited to 'theories/Reals/Ranalysis5.v')
-rw-r--r-- | theories/Reals/Ranalysis5.v | 90 |
1 files changed, 45 insertions, 45 deletions
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v index afb78e1c8..e66130b34 100644 --- a/theories/Reals/Ranalysis5.v +++ b/theories/Reals/Ranalysis5.v @@ -12,7 +12,7 @@ Require Import Rbase. Require Import Ranalysis_reg. Require Import Rfunctions. Require Import Rseries. -Require Import Fourier. +Require Import Lra. Require Import RiemannInt. Require Import SeqProp. Require Import Max. @@ -56,7 +56,7 @@ Proof. } rewrite f_eq_g in Htemp by easy. unfold id in Htemp. - fourier. + lra. Qed. Lemma derivable_pt_id_interv : forall (lb ub x:R), @@ -99,7 +99,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. split. assert (Sublemma : forall x y z, -z < y - x -> x < y + z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; @@ -108,7 +108,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. assert (Sublemma : forall x y z, y < z - x -> x + y < z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Sublemma2. apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; @@ -137,7 +137,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption. split. assert (Sublemma : forall x y z, -z < y - x -> x < y + z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ; @@ -146,7 +146,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ; apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption. assert (Sublemma : forall x y z, y < z - x -> x + y < z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Sublemma2. apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ; @@ -415,7 +415,7 @@ Ltac case_le H := let h' := fresh in match t with ?x <= ?y => case (total_order_T x y); [intros h'; case h'; clear h' | - intros h'; clear -H h'; elimtype False; fourier ] end. + intros h'; clear -H h'; elimtype False; lra ] end. (* end hide *) @@ -539,37 +539,37 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad. assert (x1_encad : lb <= x1 <= ub). split. apply RmaxLess2. apply Rlt_le. rewrite Hx1. rewrite Sublemma. - split. apply Rlt_trans with (r2:=x) ; fourier. + split. apply Rlt_trans with (r2:=x) ; lra. assumption. assert (x2_encad : lb <= x2 <= ub). split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2. - split. apply Rgt_trans with (r2:=x) ; fourier. + split. apply Rgt_trans with (r2:=x) ; lra. assumption. apply Rmin_r. assert (x_lt_x2 : x < x2). rewrite Hx2. apply Rgt_lt. rewrite Sublemma2. - split ; fourier. + split ; lra. assert (x1_lt_x : x1 < x). rewrite Hx1. rewrite Sublemma. - split ; fourier. + split ; lra. exists (Rmin (f x - f x1) (f x2 - f x)). - split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; fourier. + split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; lra. apply f_incr_interv ; intuition. intros y Temp. destruct Temp as (_,y_cond). rewrite <- f_x_b in y_cond. assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2). intros. - split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. fourier. + split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. lra. apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs. rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive. intuition. apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. apply Rmin_l. - assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. fourier. + assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. lra. apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs. apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption. apply Rmin_r. @@ -602,12 +602,12 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad. assert (x1_neq_x' : x1 <> x'). intro Hfalse. rewrite Hfalse, f_x'_y in y_cond. assert (Hf : Rabs (y - f x) < f x - y). - apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). fourier. + apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). lra. apply Rmin_l. assert(Hfin : f x - y < f x - y). apply Rle_lt_trans with (r2:=Rabs (y - f x)). replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs. - rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. fourier. + rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. lra. apply (Rlt_irrefl (f x - y)) ; assumption. split ; intuition. assert (x'_lb : x - eps < x'). @@ -619,17 +619,17 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad. assert (x1_neq_x' : x' <> x2). intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond. assert (Hf : Rabs (y - f x) < y - f x). - apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). fourier. + apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). lra. apply Rmin_r. assert(Hfin : y - f x < y - f x). - apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. fourier. + apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. lra. apply (Rlt_irrefl (y - f x)) ; assumption. split ; intuition. assert (x'_ub : x' < x + eps). apply Sublemma3. split. intuition. apply Rlt_not_eq. apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition. - apply Rabs_def1 ; fourier. + apply Rabs_def1 ; lra. assumption. split. apply Rle_trans with (r2:=x1) ; intuition. apply Rle_trans with (r2:=x2) ; intuition. @@ -742,7 +742,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq. assert (lb <= x + h <= ub). split. assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; @@ -751,7 +751,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq. apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r. apply Rgt_minus. intuition. assert (Sublemma : forall x y z, y <= z - x -> x + y <= z). - intros ; fourier. + intros ; lra. apply Sublemma. apply Rlt_le ; apply Sublemma2. apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ; @@ -767,7 +767,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq. assumption. split ; [|intuition]. assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z). - intros ; fourier. + intros ; lra. apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp. apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ; apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ; @@ -1031,7 +1031,7 @@ Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R) derivable_pt_lim f x (g x). Proof. intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos. -assert (eps_8_pos : 0 < eps / 8) by fourier. +assert (eps_8_pos : 0 < eps / 8) by lra. elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ; intros delta1 (delta1_pos, g_cont). destruct (Ball_in_inter _ _ _ _ _ xinb @@ -1041,11 +1041,11 @@ exists delta; intros h hpos hinbdelta. assert (eps'_pos : 0 < (Rabs h) * eps / 4). unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat. apply Rabs_pos_lt ; assumption. -fourier. +lra. destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx]. assert (xhinbxdelta : Boule x delta (x + h)). clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl. - destruct hinbdelta; apply Rabs_def1; fourier. + destruct hinbdelta; apply Rabs_def1; lra. assert (t : Boule c' r (x + h)). apply Pdelta in xhinbxdelta; tauto. destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh]. @@ -1064,17 +1064,17 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn exists (fn' N c) ; apply Dfn_eq_fn'. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c). solve[intros; apply derivable_id]. - assert (xh_x : x+h < x) by fourier. + assert (xh_x : x+h < x) by lra. assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c). intros c c_encad ; apply derivable_continuous_pt. exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c). solve[intros; apply derivable_continuous ; apply derivable_id]. @@ -1117,7 +1117,7 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn assert (t : Boule x delta c). destruct P. apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)). @@ -1131,27 +1131,27 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn apply Rlt_trans with (Rabs h). apply Rabs_def1. apply Rlt_trans with 0. - destruct P; fourier. + destruct P; lra. apply Rabs_pos_lt ; assumption. - rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | fourier]. - destruct P; fourier. + rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | lra]. + destruct P; lra. clear -Pdelta xhinbxdelta. apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. apply Rabs_def2 in P'; simpl in P'; destruct P'; - apply Rabs_def1; fourier. + apply Rabs_def1; lra. rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. - fourier. + lra. assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. assert (Temp : l = fn' N c). assert (bc'rc : Boule c' r c). assert (t : Boule x delta c). clear - xhinbxdelta P. destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def1; fourier. + apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (Hl' := Dfn_eq_fn' c N bc'rc). unfold derivable_pt_abs in Hl; clear -Hl Hl'. @@ -1175,17 +1175,17 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn exists (fn' N c) ; apply Dfn_eq_fn'. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c). solve[intros; apply derivable_id]. - assert (xh_x : x < x + h) by fourier. + assert (xh_x : x < x + h) by lra. assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c). intros c c_encad ; apply derivable_continuous_pt. exists (fn' N c) ; apply Dfn_eq_fn' ; intuition. assert (t : Boule x delta c). apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c). solve[intros; apply derivable_continuous ; apply derivable_id]. @@ -1223,7 +1223,7 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn assert (t : Boule x delta c). destruct P. apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def2 in xinb; apply Rabs_def1; fourier. + apply Rabs_def2 in xinb; apply Rabs_def1; lra. apply Pdelta in t; tauto. apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)). @@ -1236,27 +1236,27 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn apply Rlt_not_eq ; exact (proj1 P). apply Rlt_trans with (Rabs h). apply Rabs_def1. - destruct P; rewrite Rabs_pos_eq;fourier. + destruct P; rewrite Rabs_pos_eq;lra. apply Rle_lt_trans with 0. - assert (t := Rabs_pos h); clear -t; fourier. - clear -P; destruct P; fourier. + assert (t := Rabs_pos h); clear -t; lra. + clear -P; destruct P; lra. clear -Pdelta xhinbxdelta. apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P']. apply Rabs_def2 in P'; simpl in P'; destruct P'; - apply Rabs_def1; fourier. + apply Rabs_def1; lra. rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l. replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with (Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field. apply Rmult_lt_compat_l. apply Rabs_pos_lt ; assumption. - fourier. + lra. assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl. assert (Temp : l = fn' N c). assert (bc'rc : Boule c' r c). assert (t : Boule x delta c). clear - xhinbxdelta P. destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta. - apply Rabs_def1; fourier. + apply Rabs_def1; lra. apply Pdelta in t; tauto. assert (Hl' := Dfn_eq_fn' c N bc'rc). unfold derivable_pt_abs in Hl; clear -Hl Hl'. |