aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Ranalysis5.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis5.v')
-rw-r--r--theories/Reals/Ranalysis5.v90
1 files changed, 45 insertions, 45 deletions
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v
index afb78e1c8..e66130b34 100644
--- a/theories/Reals/Ranalysis5.v
+++ b/theories/Reals/Ranalysis5.v
@@ -12,7 +12,7 @@ Require Import Rbase.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import Rseries.
-Require Import Fourier.
+Require Import Lra.
Require Import RiemannInt.
Require Import SeqProp.
Require Import Max.
@@ -56,7 +56,7 @@ Proof.
}
rewrite f_eq_g in Htemp by easy.
unfold id in Htemp.
- fourier.
+ lra.
Qed.
Lemma derivable_pt_id_interv : forall (lb ub x:R),
@@ -99,7 +99,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
@@ -108,7 +108,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
@@ -137,7 +137,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs
apply Req_le ; apply Rabs_right ; apply Rgt_ge ; assumption.
split.
assert (Sublemma : forall x y z, -z < y - x -> x < y + z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=a-lb) ; [| apply RRle_abs] ;
@@ -146,7 +146,7 @@ assert (forall x l, lb < x < ub -> (derivable_pt_abs f x l <-> derivable_pt_abs
apply Rlt_le_trans with (r2:=Rmin (ub - a) (a - lb)) ; [| apply Rmin_r] ;
apply Rlt_le_trans with (r2:=Rmin delta (Rmin (ub - a) (a - lb))) ; [| apply Rmin_r] ; assumption.
assert (Sublemma : forall x y z, y < z - x -> x + y < z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-a) ; [| apply RRle_abs] ;
@@ -415,7 +415,7 @@ Ltac case_le H :=
let h' := fresh in
match t with ?x <= ?y => case (total_order_T x y);
[intros h'; case h'; clear h' |
- intros h'; clear -H h'; elimtype False; fourier ] end.
+ intros h'; clear -H h'; elimtype False; lra ] end.
(* end hide *)
@@ -539,37 +539,37 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
assert (x1_encad : lb <= x1 <= ub).
split. apply RmaxLess2.
apply Rlt_le. rewrite Hx1. rewrite Sublemma.
- split. apply Rlt_trans with (r2:=x) ; fourier.
+ split. apply Rlt_trans with (r2:=x) ; lra.
assumption.
assert (x2_encad : lb <= x2 <= ub).
split. apply Rlt_le ; rewrite Hx2 ; apply Rgt_lt ; rewrite Sublemma2.
- split. apply Rgt_trans with (r2:=x) ; fourier.
+ split. apply Rgt_trans with (r2:=x) ; lra.
assumption.
apply Rmin_r.
assert (x_lt_x2 : x < x2).
rewrite Hx2.
apply Rgt_lt. rewrite Sublemma2.
- split ; fourier.
+ split ; lra.
assert (x1_lt_x : x1 < x).
rewrite Hx1.
rewrite Sublemma.
- split ; fourier.
+ split ; lra.
exists (Rmin (f x - f x1) (f x2 - f x)).
- split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; fourier.
+ split. apply Rmin_pos ; apply Rgt_minus. apply f_incr_interv ; [apply RmaxLess2 | | ] ; lra.
apply f_incr_interv ; intuition.
intros y Temp.
destruct Temp as (_,y_cond).
rewrite <- f_x_b in y_cond.
assert (Temp : forall x y d1 d2, d1 > 0 -> d2 > 0 -> Rabs (y - x) < Rmin d1 d2 -> x - d1 <= y <= x + d2).
intros.
- split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. fourier.
+ split. assert (H10 : forall x y z, x - y <= z -> x - z <= y). intuition. lra.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)).
replace (Rabs (y0 - x0)) with (Rabs (x0 - y0)). apply RRle_abs.
rewrite <- Rabs_Ropp. unfold Rminus ; rewrite Ropp_plus_distr. rewrite Ropp_involutive.
intuition.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_l.
- assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. fourier.
+ assert (H10 : forall x y z, x - y <= z -> x <= y + z). intuition. lra.
apply H10. apply Rle_trans with (r2:=Rabs (y0 - x0)). apply RRle_abs.
apply Rle_trans with (r2:= Rmin d1 d2). apply Rlt_le ; assumption.
apply Rmin_r.
@@ -602,12 +602,12 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
assert (x1_neq_x' : x1 <> x').
intro Hfalse. rewrite Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < f x - y).
- apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). fourier.
+ apply Rlt_le_trans with (r2:=Rmin (f x - y) (f x2 - f x)). lra.
apply Rmin_l.
assert(Hfin : f x - y < f x - y).
apply Rle_lt_trans with (r2:=Rabs (y - f x)).
replace (Rabs (y - f x)) with (Rabs (f x - y)). apply RRle_abs.
- rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. fourier.
+ rewrite <- Rabs_Ropp. replace (- (f x - y)) with (y - f x) by field ; reflexivity. lra.
apply (Rlt_irrefl (f x - y)) ; assumption.
split ; intuition.
assert (x'_lb : x - eps < x').
@@ -619,17 +619,17 @@ intros f g lb ub lb_lt_ub f_incr_interv f_eq_g f_cont_interv b b_encad.
assert (x1_neq_x' : x' <> x2).
intro Hfalse. rewrite <- Hfalse, f_x'_y in y_cond.
assert (Hf : Rabs (y - f x) < y - f x).
- apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). fourier.
+ apply Rlt_le_trans with (r2:=Rmin (f x - f x1) (y - f x)). lra.
apply Rmin_r.
assert(Hfin : y - f x < y - f x).
- apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. fourier.
+ apply Rle_lt_trans with (r2:=Rabs (y - f x)). apply RRle_abs. lra.
apply (Rlt_irrefl (y - f x)) ; assumption.
split ; intuition.
assert (x'_ub : x' < x + eps).
apply Sublemma3.
split. intuition. apply Rlt_not_eq.
apply Rlt_le_trans with (r2:=x2) ; [ |rewrite Hx2 ; apply Rmin_l] ; intuition.
- apply Rabs_def1 ; fourier.
+ apply Rabs_def1 ; lra.
assumption.
split. apply Rle_trans with (r2:=x1) ; intuition.
apply Rle_trans with (r2:=x2) ; intuition.
@@ -742,7 +742,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
assert (lb <= x + h <= ub).
split.
assert (Sublemma : forall x y z, -z <= y - x -> x <= y + z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
@@ -751,7 +751,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
apply Rlt_le_trans with (r2:=delta''). assumption. intuition. apply Rmin_r.
apply Rgt_minus. intuition.
assert (Sublemma : forall x y z, y <= z - x -> x + y <= z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma.
apply Rlt_le ; apply Sublemma2.
apply Rlt_le_trans with (r2:=ub-x) ; [| apply RRle_abs] ;
@@ -767,7 +767,7 @@ intros f g lb ub x Prf g_cont_pur lb_lt_ub x_encad Prg_incr f_eq_g df_neq.
assumption.
split ; [|intuition].
assert (Sublemma : forall x y z, - z <= y - x -> x <= y + z).
- intros ; fourier.
+ intros ; lra.
apply Sublemma ; apply Rlt_le ; apply Sublemma2. rewrite Rabs_Ropp.
apply Rlt_le_trans with (r2:=x-lb) ; [| apply RRle_abs] ;
apply Rlt_le_trans with (r2:=Rmin (x - lb) (ub - x)) ; [| apply Rmin_l] ;
@@ -1031,7 +1031,7 @@ Lemma derivable_pt_lim_CVU : forall (fn fn':nat -> R -> R) (f g:R->R)
derivable_pt_lim f x (g x).
Proof.
intros fn fn' f g x c' r xinb Dfn_eq_fn' fn_CV_f fn'_CVU_g g_cont eps eps_pos.
-assert (eps_8_pos : 0 < eps / 8) by fourier.
+assert (eps_8_pos : 0 < eps / 8) by lra.
elim (g_cont x xinb _ eps_8_pos) ; clear g_cont ;
intros delta1 (delta1_pos, g_cont).
destruct (Ball_in_inter _ _ _ _ _ xinb
@@ -1041,11 +1041,11 @@ exists delta; intros h hpos hinbdelta.
assert (eps'_pos : 0 < (Rabs h) * eps / 4).
unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat.
apply Rabs_pos_lt ; assumption.
-fourier.
+lra.
destruct (fn_CV_f x xinb ((Rabs h) * eps / 4) eps'_pos) as [N2 fnx_CV_fx].
assert (xhinbxdelta : Boule x delta (x + h)).
clear -hinbdelta; apply Rabs_def2 in hinbdelta; unfold Boule; simpl.
- destruct hinbdelta; apply Rabs_def1; fourier.
+ destruct hinbdelta; apply Rabs_def1; lra.
assert (t : Boule c' r (x + h)).
apply Pdelta in xhinbxdelta; tauto.
destruct (fn_CV_f (x+h) t ((Rabs h) * eps / 4) eps'_pos) as [N1 fnxh_CV_fxh].
@@ -1064,17 +1064,17 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x + h < c < x -> derivable_pt id c).
solve[intros; apply derivable_id].
- assert (xh_x : x+h < x) by fourier.
+ assert (xh_x : x+h < x) by lra.
assert (pr3 : forall c : R, x + h <= c <= x -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x + h <= c <= x -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
@@ -1117,7 +1117,7 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
@@ -1131,27 +1131,27 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
apply Rlt_trans with 0.
- destruct P; fourier.
+ destruct P; lra.
apply Rabs_pos_lt ; assumption.
- rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | fourier].
- destruct P; fourier.
+ rewrite <- Rabs_Ropp, Rabs_pos_eq, Ropp_involutive;[ | lra].
+ destruct P; lra.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
- apply Rabs_def1; fourier.
+ apply Rabs_def1; lra.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
- fourier.
+ lra.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def1; fourier.
+ apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.
@@ -1175,17 +1175,17 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
exists (fn' N c) ; apply Dfn_eq_fn'.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta; destruct c_encad.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr2 : forall c : R, x < c < x + h -> derivable_pt id c).
solve[intros; apply derivable_id].
- assert (xh_x : x < x + h) by fourier.
+ assert (xh_x : x < x + h) by lra.
assert (pr3 : forall c : R, x <= c <= x + h -> continuity_pt (fn N) c).
intros c c_encad ; apply derivable_continuous_pt.
exists (fn' N c) ; apply Dfn_eq_fn' ; intuition.
assert (t : Boule x delta c).
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (pr4 : forall c : R, x <= c <= x + h -> continuity_pt id c).
solve[intros; apply derivable_continuous ; apply derivable_id].
@@ -1223,7 +1223,7 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
assert (t : Boule x delta c).
destruct P.
apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def2 in xinb; apply Rabs_def1; fourier.
+ apply Rabs_def2 in xinb; apply Rabs_def1; lra.
apply Pdelta in t; tauto.
apply Rlt_trans with (Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) +
Rabs h * (eps / 8)).
@@ -1236,27 +1236,27 @@ assert (Main : Rabs ((f (x+h) - fn N (x+h)) - (f x - fn N x) + (fn N (x+h) - fn
apply Rlt_not_eq ; exact (proj1 P).
apply Rlt_trans with (Rabs h).
apply Rabs_def1.
- destruct P; rewrite Rabs_pos_eq;fourier.
+ destruct P; rewrite Rabs_pos_eq;lra.
apply Rle_lt_trans with 0.
- assert (t := Rabs_pos h); clear -t; fourier.
- clear -P; destruct P; fourier.
+ assert (t := Rabs_pos h); clear -t; lra.
+ clear -P; destruct P; lra.
clear -Pdelta xhinbxdelta.
apply Pdelta in xhinbxdelta; destruct xhinbxdelta as [_ P'].
apply Rabs_def2 in P'; simpl in P'; destruct P';
- apply Rabs_def1; fourier.
+ apply Rabs_def1; lra.
rewrite Rplus_assoc ; rewrite Rplus_assoc ; rewrite <- Rmult_plus_distr_l.
replace (Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8))) with
(Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8)) by field.
apply Rmult_lt_compat_l.
apply Rabs_pos_lt ; assumption.
- fourier.
+ lra.
assert (H := pr1 c P) ; elim H ; clear H ; intros l Hl.
assert (Temp : l = fn' N c).
assert (bc'rc : Boule c' r c).
assert (t : Boule x delta c).
clear - xhinbxdelta P.
destruct P; apply Rabs_def2 in xhinbxdelta; destruct xhinbxdelta.
- apply Rabs_def1; fourier.
+ apply Rabs_def1; lra.
apply Pdelta in t; tauto.
assert (Hl' := Dfn_eq_fn' c N bc'rc).
unfold derivable_pt_abs in Hl; clear -Hl Hl'.